WME UrSuS Tools: LV Kadastrs
// ==UserScript==
// @name WME UT Kadastrs
// @namespace http://ursus.id.lv
// @version 1.2.0
// @description WME UrSuS Tools: LV Kadastrs
// @author UrSuS
// @match https://*.waze.com/*editor*
// @license MIT/BSD/X11
// @icon 
// @exclude https://www.waze.com/user/editor*
// @require https://greasyfork.org/scripts/24851-wazewrap/code/WazeWrap.js
// @connect lvmgeoserver.lvm.lv
// @connect docs.google.com
// @grant GM_info
// @grant GM_xmlhttpRequest
// ==/UserScript==
(function (exports) {
'use strict';
// index.ts
var earthRadius = 63710088e-1;
var factors = {
centimeters: earthRadius * 100,
centimetres: earthRadius * 100,
degrees: 360 / (2 * Math.PI),
feet: earthRadius * 3.28084,
inches: earthRadius * 39.37,
kilometers: earthRadius / 1e3,
kilometres: earthRadius / 1e3,
meters: earthRadius,
metres: earthRadius,
miles: earthRadius / 1609.344,
millimeters: earthRadius * 1e3,
millimetres: earthRadius * 1e3,
nauticalmiles: earthRadius / 1852,
radians: 1,
yards: earthRadius * 1.0936
};
function feature(geom, properties, options = {}) {
const feat = { type: "Feature" };
if (options.id === 0 || options.id) {
feat.id = options.id;
}
if (options.bbox) {
feat.bbox = options.bbox;
}
feat.properties = properties || {};
feat.geometry = geom;
return feat;
}
function point(coordinates, properties, options = {}) {
if (!coordinates) {
throw new Error("coordinates is required");
}
if (!Array.isArray(coordinates)) {
throw new Error("coordinates must be an Array");
}
if (coordinates.length < 2) {
throw new Error("coordinates must be at least 2 numbers long");
}
if (!isNumber(coordinates[0]) || !isNumber(coordinates[1])) {
throw new Error("coordinates must contain numbers");
}
const geom = {
type: "Point",
coordinates
};
return feature(geom, properties, options);
}
function polygon(coordinates, properties, options = {}) {
for (const ring of coordinates) {
if (ring.length < 4) {
throw new Error(
"Each LinearRing of a Polygon must have 4 or more Positions."
);
}
if (ring[ring.length - 1].length !== ring[0].length) {
throw new Error("First and last Position are not equivalent.");
}
for (let j = 0; j < ring[ring.length - 1].length; j++) {
if (ring[ring.length - 1][j] !== ring[0][j]) {
throw new Error("First and last Position are not equivalent.");
}
}
}
const geom = {
type: "Polygon",
coordinates
};
return feature(geom, properties, options);
}
function lineString(coordinates, properties, options = {}) {
if (coordinates.length < 2) {
throw new Error("coordinates must be an array of two or more positions");
}
const geom = {
type: "LineString",
coordinates
};
return feature(geom, properties, options);
}
function featureCollection(features, options = {}) {
const fc = { type: "FeatureCollection" };
if (options.id) {
fc.id = options.id;
}
if (options.bbox) {
fc.bbox = options.bbox;
}
fc.features = features;
return fc;
}
function multiLineString(coordinates, properties, options = {}) {
const geom = {
type: "MultiLineString",
coordinates
};
return feature(geom, properties, options);
}
function radiansToLength(radians, units = "kilometers") {
const factor = factors[units];
if (!factor) {
throw new Error(units + " units is invalid");
}
return radians * factor;
}
function lengthToRadians(distance, units = "kilometers") {
const factor = factors[units];
if (!factor) {
throw new Error(units + " units is invalid");
}
return distance / factor;
}
function radiansToDegrees(radians) {
const normalisedRadians = radians % (2 * Math.PI);
return normalisedRadians * 180 / Math.PI;
}
function degreesToRadians(degrees) {
const normalisedDegrees = degrees % 360;
return normalisedDegrees * Math.PI / 180;
}
function convertLength(length, originalUnit = "kilometers", finalUnit = "kilometers") {
if (!(length >= 0)) {
throw new Error("length must be a positive number");
}
return radiansToLength(lengthToRadians(length, originalUnit), finalUnit);
}
function isNumber(num) {
return !isNaN(num) && num !== null && !Array.isArray(num);
}
function isObject(input) {
return input !== null && typeof input === "object" && !Array.isArray(input);
}
// index.ts
function getCoord(coord) {
if (!coord) {
throw new Error("coord is required");
}
if (!Array.isArray(coord)) {
if (coord.type === "Feature" && coord.geometry !== null && coord.geometry.type === "Point") {
return [...coord.geometry.coordinates];
}
if (coord.type === "Point") {
return [...coord.coordinates];
}
}
if (Array.isArray(coord) && coord.length >= 2 && !Array.isArray(coord[0]) && !Array.isArray(coord[1])) {
return [...coord];
}
throw new Error("coord must be GeoJSON Point or an Array of numbers");
}
function getCoords(coords) {
if (Array.isArray(coords)) {
return coords;
}
if (coords.type === "Feature") {
if (coords.geometry !== null) {
return coords.geometry.coordinates;
}
} else {
if (coords.coordinates) {
return coords.coordinates;
}
}
throw new Error(
"coords must be GeoJSON Feature, Geometry Object or an Array"
);
}
function featureOf(feature, type, name) {
if (!feature) {
throw new Error("No feature passed");
}
if (!name) {
throw new Error(".featureOf() requires a name");
}
if (!feature || feature.type !== "Feature" || !feature.geometry) {
throw new Error(
"Invalid input to " + name + ", Feature with geometry required"
);
}
if (!feature.geometry || feature.geometry.type !== type) {
throw new Error(
"Invalid input to " + name + ": must be a " + type + ", given " + feature.geometry.type
);
}
}
function getGeom(geojson) {
if (geojson.type === "Feature") {
return geojson.geometry;
}
return geojson;
}
// index.ts
function distance(from, to, options = {}) {
var coordinates1 = getCoord(from);
var coordinates2 = getCoord(to);
var dLat = degreesToRadians(coordinates2[1] - coordinates1[1]);
var dLon = degreesToRadians(coordinates2[0] - coordinates1[0]);
var lat1 = degreesToRadians(coordinates1[1]);
var lat2 = degreesToRadians(coordinates2[1]);
var a = Math.pow(Math.sin(dLat / 2), 2) + Math.pow(Math.sin(dLon / 2), 2) * Math.cos(lat1) * Math.cos(lat2);
return radiansToLength(
2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)),
options.units
);
}
// index.ts
function rhumbBearing(start, end, options = {}) {
let bear360;
if (options.final) {
bear360 = calculateRhumbBearing(getCoord(end), getCoord(start));
} else {
bear360 = calculateRhumbBearing(getCoord(start), getCoord(end));
}
const bear180 = bear360 > 180 ? -(360 - bear360) : bear360;
return bear180;
}
function calculateRhumbBearing(from, to) {
const phi1 = degreesToRadians(from[1]);
const phi2 = degreesToRadians(to[1]);
let deltaLambda = degreesToRadians(to[0] - from[0]);
if (deltaLambda > Math.PI) {
deltaLambda -= 2 * Math.PI;
}
if (deltaLambda < -Math.PI) {
deltaLambda += 2 * Math.PI;
}
const deltaPsi = Math.log(
Math.tan(phi2 / 2 + Math.PI / 4) / Math.tan(phi1 / 2 + Math.PI / 4)
);
const theta = Math.atan2(deltaLambda, deltaPsi);
return (radiansToDegrees(theta) + 360) % 360;
}
// index.js
function coordEach(geojson, callback, excludeWrapCoord) {
if (geojson === null) return;
var j, k, l, geometry, stopG, coords, geometryMaybeCollection, wrapShrink = 0, coordIndex = 0, isGeometryCollection, type = geojson.type, isFeatureCollection = type === "FeatureCollection", isFeature = type === "Feature", stop = isFeatureCollection ? geojson.features.length : 1;
for (var featureIndex = 0; featureIndex < stop; featureIndex++) {
geometryMaybeCollection = isFeatureCollection ? geojson.features[featureIndex].geometry : isFeature ? geojson.geometry : geojson;
isGeometryCollection = geometryMaybeCollection ? geometryMaybeCollection.type === "GeometryCollection" : false;
stopG = isGeometryCollection ? geometryMaybeCollection.geometries.length : 1;
for (var geomIndex = 0; geomIndex < stopG; geomIndex++) {
var multiFeatureIndex = 0;
var geometryIndex = 0;
geometry = isGeometryCollection ? geometryMaybeCollection.geometries[geomIndex] : geometryMaybeCollection;
if (geometry === null) continue;
coords = geometry.coordinates;
var geomType = geometry.type;
wrapShrink = excludeWrapCoord && (geomType === "Polygon" || geomType === "MultiPolygon") ? 1 : 0;
switch (geomType) {
case null:
break;
case "Point":
if (callback(
coords,
coordIndex,
featureIndex,
multiFeatureIndex,
geometryIndex
) === false)
return false;
coordIndex++;
multiFeatureIndex++;
break;
case "LineString":
case "MultiPoint":
for (j = 0; j < coords.length; j++) {
if (callback(
coords[j],
coordIndex,
featureIndex,
multiFeatureIndex,
geometryIndex
) === false)
return false;
coordIndex++;
if (geomType === "MultiPoint") multiFeatureIndex++;
}
if (geomType === "LineString") multiFeatureIndex++;
break;
case "Polygon":
case "MultiLineString":
for (j = 0; j < coords.length; j++) {
for (k = 0; k < coords[j].length - wrapShrink; k++) {
if (callback(
coords[j][k],
coordIndex,
featureIndex,
multiFeatureIndex,
geometryIndex
) === false)
return false;
coordIndex++;
}
if (geomType === "MultiLineString") multiFeatureIndex++;
if (geomType === "Polygon") geometryIndex++;
}
if (geomType === "Polygon") multiFeatureIndex++;
break;
case "MultiPolygon":
for (j = 0; j < coords.length; j++) {
geometryIndex = 0;
for (k = 0; k < coords[j].length; k++) {
for (l = 0; l < coords[j][k].length - wrapShrink; l++) {
if (callback(
coords[j][k][l],
coordIndex,
featureIndex,
multiFeatureIndex,
geometryIndex
) === false)
return false;
coordIndex++;
}
geometryIndex++;
}
multiFeatureIndex++;
}
break;
case "GeometryCollection":
for (j = 0; j < geometry.geometries.length; j++)
if (coordEach(geometry.geometries[j], callback, excludeWrapCoord) === false)
return false;
break;
default:
throw new Error("Unknown Geometry Type");
}
}
}
}
function geomEach(geojson, callback) {
var i, j, g, geometry, stopG, geometryMaybeCollection, isGeometryCollection, featureProperties, featureBBox, featureId, featureIndex = 0, isFeatureCollection = geojson.type === "FeatureCollection", isFeature = geojson.type === "Feature", stop = isFeatureCollection ? geojson.features.length : 1;
for (i = 0; i < stop; i++) {
geometryMaybeCollection = isFeatureCollection ? geojson.features[i].geometry : isFeature ? geojson.geometry : geojson;
featureProperties = isFeatureCollection ? geojson.features[i].properties : isFeature ? geojson.properties : {};
featureBBox = isFeatureCollection ? geojson.features[i].bbox : isFeature ? geojson.bbox : void 0;
featureId = isFeatureCollection ? geojson.features[i].id : isFeature ? geojson.id : void 0;
isGeometryCollection = geometryMaybeCollection ? geometryMaybeCollection.type === "GeometryCollection" : false;
stopG = isGeometryCollection ? geometryMaybeCollection.geometries.length : 1;
for (g = 0; g < stopG; g++) {
geometry = isGeometryCollection ? geometryMaybeCollection.geometries[g] : geometryMaybeCollection;
if (geometry === null) {
if (callback(
null,
featureIndex,
featureProperties,
featureBBox,
featureId
) === false)
return false;
continue;
}
switch (geometry.type) {
case "Point":
case "LineString":
case "MultiPoint":
case "Polygon":
case "MultiLineString":
case "MultiPolygon": {
if (callback(
geometry,
featureIndex,
featureProperties,
featureBBox,
featureId
) === false)
return false;
break;
}
case "GeometryCollection": {
for (j = 0; j < geometry.geometries.length; j++) {
if (callback(
geometry.geometries[j],
featureIndex,
featureProperties,
featureBBox,
featureId
) === false)
return false;
}
break;
}
default:
throw new Error("Unknown Geometry Type");
}
}
featureIndex++;
}
}
function geomReduce(geojson, callback, initialValue) {
var previousValue = initialValue;
geomEach(
geojson,
function(currentGeometry, featureIndex, featureProperties, featureBBox, featureId) {
if (featureIndex === 0 && initialValue === void 0)
previousValue = currentGeometry;
else
previousValue = callback(
previousValue,
currentGeometry,
featureIndex,
featureProperties,
featureBBox,
featureId
);
}
);
return previousValue;
}
function flattenEach(geojson, callback) {
geomEach(geojson, function(geometry, featureIndex, properties, bbox, id) {
var type = geometry === null ? null : geometry.type;
switch (type) {
case null:
case "Point":
case "LineString":
case "Polygon":
if (callback(
feature(geometry, properties, { bbox, id }),
featureIndex,
0
) === false)
return false;
return;
}
var geomType;
switch (type) {
case "MultiPoint":
geomType = "Point";
break;
case "MultiLineString":
geomType = "LineString";
break;
case "MultiPolygon":
geomType = "Polygon";
break;
}
for (var multiFeatureIndex = 0; multiFeatureIndex < geometry.coordinates.length; multiFeatureIndex++) {
var coordinate = geometry.coordinates[multiFeatureIndex];
var geom = {
type: geomType,
coordinates: coordinate
};
if (callback(feature(geom, properties), featureIndex, multiFeatureIndex) === false)
return false;
}
});
}
function segmentEach(geojson, callback) {
flattenEach(geojson, function(feature2, featureIndex, multiFeatureIndex) {
var segmentIndex = 0;
if (!feature2.geometry) return;
var type = feature2.geometry.type;
if (type === "Point" || type === "MultiPoint") return;
var previousCoords;
var previousFeatureIndex = 0;
var previousMultiIndex = 0;
var prevGeomIndex = 0;
if (coordEach(
feature2,
function(currentCoord, coordIndex, featureIndexCoord, multiPartIndexCoord, geometryIndex) {
if (previousCoords === void 0 || featureIndex > previousFeatureIndex || multiPartIndexCoord > previousMultiIndex || geometryIndex > prevGeomIndex) {
previousCoords = currentCoord;
previousFeatureIndex = featureIndex;
previousMultiIndex = multiPartIndexCoord;
prevGeomIndex = geometryIndex;
segmentIndex = 0;
return;
}
var currentSegment = lineString(
[previousCoords, currentCoord],
feature2.properties
);
if (callback(
currentSegment,
featureIndex,
multiFeatureIndex,
geometryIndex,
segmentIndex
) === false)
return false;
segmentIndex++;
previousCoords = currentCoord;
}
) === false)
return false;
});
}
// index.ts
function area(geojson) {
return geomReduce(
geojson,
(value, geom) => {
return value + calculateArea(geom);
},
0
);
}
function calculateArea(geom) {
let total = 0;
let i;
switch (geom.type) {
case "Polygon":
return polygonArea(geom.coordinates);
case "MultiPolygon":
for (i = 0; i < geom.coordinates.length; i++) {
total += polygonArea(geom.coordinates[i]);
}
return total;
case "Point":
case "MultiPoint":
case "LineString":
case "MultiLineString":
return 0;
}
return 0;
}
function polygonArea(coords) {
let total = 0;
if (coords && coords.length > 0) {
total += Math.abs(ringArea(coords[0]));
for (let i = 1; i < coords.length; i++) {
total -= Math.abs(ringArea(coords[i]));
}
}
return total;
}
var FACTOR = earthRadius * earthRadius / 2;
var PI_OVER_180 = Math.PI / 180;
function ringArea(coords) {
const coordsLength = coords.length - 1;
if (coordsLength <= 2) return 0;
let total = 0;
let i = 0;
while (i < coordsLength) {
const lower = coords[i];
const middle = coords[i + 1 === coordsLength ? 0 : i + 1];
const upper = coords[i + 2 >= coordsLength ? (i + 2) % coordsLength : i + 2];
const lowerX = lower[0] * PI_OVER_180;
const middleY = middle[1] * PI_OVER_180;
const upperX = upper[0] * PI_OVER_180;
total += (upperX - lowerX) * Math.sin(middleY);
i++;
}
return total * FACTOR;
}
// index.ts
function bbox(geojson, options = {}) {
if (geojson.bbox != null && true !== options.recompute) {
return geojson.bbox;
}
const result = [Infinity, Infinity, -Infinity, -Infinity];
coordEach(geojson, (coord) => {
if (result[0] > coord[0]) {
result[0] = coord[0];
}
if (result[1] > coord[1]) {
result[1] = coord[1];
}
if (result[2] < coord[0]) {
result[2] = coord[0];
}
if (result[3] < coord[1]) {
result[3] = coord[1];
}
});
return result;
}
const epsilon = 1.1102230246251565e-16;
const splitter = 134217729;
const resulterrbound = (3 + 8 * epsilon) * epsilon;
// fast_expansion_sum_zeroelim routine from oritinal code
function sum(elen, e, flen, f, h) {
let Q, Qnew, hh, bvirt;
let enow = e[0];
let fnow = f[0];
let eindex = 0;
let findex = 0;
if ((fnow > enow) === (fnow > -enow)) {
Q = enow;
enow = e[++eindex];
} else {
Q = fnow;
fnow = f[++findex];
}
let hindex = 0;
if (eindex < elen && findex < flen) {
if ((fnow > enow) === (fnow > -enow)) {
Qnew = enow + Q;
hh = Q - (Qnew - enow);
enow = e[++eindex];
} else {
Qnew = fnow + Q;
hh = Q - (Qnew - fnow);
fnow = f[++findex];
}
Q = Qnew;
if (hh !== 0) {
h[hindex++] = hh;
}
while (eindex < elen && findex < flen) {
if ((fnow > enow) === (fnow > -enow)) {
Qnew = Q + enow;
bvirt = Qnew - Q;
hh = Q - (Qnew - bvirt) + (enow - bvirt);
enow = e[++eindex];
} else {
Qnew = Q + fnow;
bvirt = Qnew - Q;
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
fnow = f[++findex];
}
Q = Qnew;
if (hh !== 0) {
h[hindex++] = hh;
}
}
}
while (eindex < elen) {
Qnew = Q + enow;
bvirt = Qnew - Q;
hh = Q - (Qnew - bvirt) + (enow - bvirt);
enow = e[++eindex];
Q = Qnew;
if (hh !== 0) {
h[hindex++] = hh;
}
}
while (findex < flen) {
Qnew = Q + fnow;
bvirt = Qnew - Q;
hh = Q - (Qnew - bvirt) + (fnow - bvirt);
fnow = f[++findex];
Q = Qnew;
if (hh !== 0) {
h[hindex++] = hh;
}
}
if (Q !== 0 || hindex === 0) {
h[hindex++] = Q;
}
return hindex;
}
function estimate(elen, e) {
let Q = e[0];
for (let i = 1; i < elen; i++) Q += e[i];
return Q;
}
function vec(n) {
return new Float64Array(n);
}
const ccwerrboundA = (3 + 16 * epsilon) * epsilon;
const ccwerrboundB = (2 + 12 * epsilon) * epsilon;
const ccwerrboundC = (9 + 64 * epsilon) * epsilon * epsilon;
const B = vec(4);
const C1$1 = vec(8);
const C2 = vec(12);
const D = vec(16);
const u = vec(4);
function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) {
let acxtail, acytail, bcxtail, bcytail;
let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3;
const acx = ax - cx;
const bcx = bx - cx;
const acy = ay - cy;
const bcy = by - cy;
s1 = acx * bcy;
c = splitter * acx;
ahi = c - (c - acx);
alo = acx - ahi;
c = splitter * bcy;
bhi = c - (c - bcy);
blo = bcy - bhi;
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
t1 = acy * bcx;
c = splitter * acy;
ahi = c - (c - acy);
alo = acy - ahi;
c = splitter * bcx;
bhi = c - (c - bcx);
blo = bcx - bhi;
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
_i = s0 - t0;
bvirt = s0 - _i;
B[0] = s0 - (_i + bvirt) + (bvirt - t0);
_j = s1 + _i;
bvirt = _j - s1;
_0 = s1 - (_j - bvirt) + (_i - bvirt);
_i = _0 - t1;
bvirt = _0 - _i;
B[1] = _0 - (_i + bvirt) + (bvirt - t1);
u3 = _j + _i;
bvirt = u3 - _j;
B[2] = _j - (u3 - bvirt) + (_i - bvirt);
B[3] = u3;
let det = estimate(4, B);
let errbound = ccwerrboundB * detsum;
if (det >= errbound || -det >= errbound) {
return det;
}
bvirt = ax - acx;
acxtail = ax - (acx + bvirt) + (bvirt - cx);
bvirt = bx - bcx;
bcxtail = bx - (bcx + bvirt) + (bvirt - cx);
bvirt = ay - acy;
acytail = ay - (acy + bvirt) + (bvirt - cy);
bvirt = by - bcy;
bcytail = by - (bcy + bvirt) + (bvirt - cy);
if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) {
return det;
}
errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det);
det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail);
if (det >= errbound || -det >= errbound) return det;
s1 = acxtail * bcy;
c = splitter * acxtail;
ahi = c - (c - acxtail);
alo = acxtail - ahi;
c = splitter * bcy;
bhi = c - (c - bcy);
blo = bcy - bhi;
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
t1 = acytail * bcx;
c = splitter * acytail;
ahi = c - (c - acytail);
alo = acytail - ahi;
c = splitter * bcx;
bhi = c - (c - bcx);
blo = bcx - bhi;
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
_i = s0 - t0;
bvirt = s0 - _i;
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
_j = s1 + _i;
bvirt = _j - s1;
_0 = s1 - (_j - bvirt) + (_i - bvirt);
_i = _0 - t1;
bvirt = _0 - _i;
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
u3 = _j + _i;
bvirt = u3 - _j;
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
u[3] = u3;
const C1len = sum(4, B, 4, u, C1$1);
s1 = acx * bcytail;
c = splitter * acx;
ahi = c - (c - acx);
alo = acx - ahi;
c = splitter * bcytail;
bhi = c - (c - bcytail);
blo = bcytail - bhi;
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
t1 = acy * bcxtail;
c = splitter * acy;
ahi = c - (c - acy);
alo = acy - ahi;
c = splitter * bcxtail;
bhi = c - (c - bcxtail);
blo = bcxtail - bhi;
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
_i = s0 - t0;
bvirt = s0 - _i;
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
_j = s1 + _i;
bvirt = _j - s1;
_0 = s1 - (_j - bvirt) + (_i - bvirt);
_i = _0 - t1;
bvirt = _0 - _i;
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
u3 = _j + _i;
bvirt = u3 - _j;
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
u[3] = u3;
const C2len = sum(C1len, C1$1, 4, u, C2);
s1 = acxtail * bcytail;
c = splitter * acxtail;
ahi = c - (c - acxtail);
alo = acxtail - ahi;
c = splitter * bcytail;
bhi = c - (c - bcytail);
blo = bcytail - bhi;
s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo);
t1 = acytail * bcxtail;
c = splitter * acytail;
ahi = c - (c - acytail);
alo = acytail - ahi;
c = splitter * bcxtail;
bhi = c - (c - bcxtail);
blo = bcxtail - bhi;
t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo);
_i = s0 - t0;
bvirt = s0 - _i;
u[0] = s0 - (_i + bvirt) + (bvirt - t0);
_j = s1 + _i;
bvirt = _j - s1;
_0 = s1 - (_j - bvirt) + (_i - bvirt);
_i = _0 - t1;
bvirt = _0 - _i;
u[1] = _0 - (_i + bvirt) + (bvirt - t1);
u3 = _j + _i;
bvirt = u3 - _j;
u[2] = _j - (u3 - bvirt) + (_i - bvirt);
u[3] = u3;
const Dlen = sum(C2len, C2, 4, u, D);
return D[Dlen - 1];
}
function orient2d(ax, ay, bx, by, cx, cy) {
const detleft = (ay - cy) * (bx - cx);
const detright = (ax - cx) * (by - cy);
const det = detleft - detright;
const detsum = Math.abs(detleft + detright);
if (Math.abs(det) >= ccwerrboundA * detsum) return det;
return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum);
}
function pointInPolygon(p, polygon) {
var i;
var ii;
var k = 0;
var f;
var u1;
var v1;
var u2;
var v2;
var currentP;
var nextP;
var x = p[0];
var y = p[1];
var numContours = polygon.length;
for (i = 0; i < numContours; i++) {
ii = 0;
var contour = polygon[i];
var contourLen = contour.length - 1;
currentP = contour[0];
if (currentP[0] !== contour[contourLen][0] &&
currentP[1] !== contour[contourLen][1]) {
throw new Error('First and last coordinates in a ring must be the same')
}
u1 = currentP[0] - x;
v1 = currentP[1] - y;
for (ii; ii < contourLen; ii++) {
nextP = contour[ii + 1];
u2 = nextP[0] - x;
v2 = nextP[1] - y;
if (v1 === 0 && v2 === 0) {
if ((u2 <= 0 && u1 >= 0) || (u1 <= 0 && u2 >= 0)) { return 0 }
} else if ((v2 >= 0 && v1 <= 0) || (v2 <= 0 && v1 >= 0)) {
f = orient2d(u1, u2, v1, v2, 0, 0);
if (f === 0) { return 0 }
if ((f > 0 && v2 > 0 && v1 <= 0) || (f < 0 && v2 <= 0 && v1 > 0)) { k++; }
}
currentP = nextP;
v1 = v2;
u1 = u2;
}
}
if (k % 2 === 0) { return false }
return true
}
// index.ts
function booleanPointInPolygon(point, polygon, options = {}) {
if (!point) {
throw new Error("point is required");
}
if (!polygon) {
throw new Error("polygon is required");
}
const pt = getCoord(point);
const geom = getGeom(polygon);
const type = geom.type;
const bbox = polygon.bbox;
let polys = geom.coordinates;
if (bbox && inBBox(pt, bbox) === false) {
return false;
}
if (type === "Polygon") {
polys = [polys];
}
let result = false;
for (var i = 0; i < polys.length; ++i) {
const polyResult = pointInPolygon(pt, polys[i]);
if (polyResult === 0) return options.ignoreBoundary ? false : true;
else if (polyResult) result = true;
}
return result;
}
function inBBox(pt, bbox) {
return bbox[0] <= pt[0] && bbox[1] <= pt[1] && bbox[2] >= pt[0] && bbox[3] >= pt[1];
}
// index.ts
function booleanPointOnLine(pt, line, options = {}) {
const ptCoords = getCoord(pt);
const lineCoords = getCoords(line);
for (let i = 0; i < lineCoords.length - 1; i++) {
let ignoreBoundary = false;
if (options.ignoreEndVertices) {
if (i === 0) {
ignoreBoundary = "start";
}
if (i === lineCoords.length - 2) {
ignoreBoundary = "end";
}
if (i === 0 && i + 1 === lineCoords.length - 1) {
ignoreBoundary = "both";
}
}
if (isPointOnLineSegment$1(
lineCoords[i],
lineCoords[i + 1],
ptCoords,
ignoreBoundary,
typeof options.epsilon === "undefined" ? null : options.epsilon
)) {
return true;
}
}
return false;
}
function isPointOnLineSegment$1(lineSegmentStart, lineSegmentEnd, pt, excludeBoundary, epsilon) {
const x = pt[0];
const y = pt[1];
const x1 = lineSegmentStart[0];
const y1 = lineSegmentStart[1];
const x2 = lineSegmentEnd[0];
const y2 = lineSegmentEnd[1];
const dxc = pt[0] - x1;
const dyc = pt[1] - y1;
const dxl = x2 - x1;
const dyl = y2 - y1;
const cross = dxc * dyl - dyc * dxl;
if (epsilon !== null) {
if (Math.abs(cross) > epsilon) {
return false;
}
} else if (cross !== 0) {
return false;
}
if (Math.abs(dxl) === Math.abs(dyl) && Math.abs(dxl) === 0) {
if (excludeBoundary) {
return false;
}
if (pt[0] === lineSegmentStart[0] && pt[1] === lineSegmentStart[1]) {
return true;
} else {
return false;
}
}
if (!excludeBoundary) {
if (Math.abs(dxl) >= Math.abs(dyl)) {
return dxl > 0 ? x1 <= x && x <= x2 : x2 <= x && x <= x1;
}
return dyl > 0 ? y1 <= y && y <= y2 : y2 <= y && y <= y1;
} else if (excludeBoundary === "start") {
if (Math.abs(dxl) >= Math.abs(dyl)) {
return dxl > 0 ? x1 < x && x <= x2 : x2 <= x && x < x1;
}
return dyl > 0 ? y1 < y && y <= y2 : y2 <= y && y < y1;
} else if (excludeBoundary === "end") {
if (Math.abs(dxl) >= Math.abs(dyl)) {
return dxl > 0 ? x1 <= x && x < x2 : x2 < x && x <= x1;
}
return dyl > 0 ? y1 <= y && y < y2 : y2 < y && y <= y1;
} else if (excludeBoundary === "both") {
if (Math.abs(dxl) >= Math.abs(dyl)) {
return dxl > 0 ? x1 < x && x < x2 : x2 < x && x < x1;
}
return dyl > 0 ? y1 < y && y < y2 : y2 < y && y < y1;
}
return false;
}
class TinyQueue {
constructor(data = [], compare = defaultCompare) {
this.data = data;
this.length = this.data.length;
this.compare = compare;
if (this.length > 0) {
for (let i = (this.length >> 1) - 1; i >= 0; i--) this._down(i);
}
}
push(item) {
this.data.push(item);
this.length++;
this._up(this.length - 1);
}
pop() {
if (this.length === 0) return undefined;
const top = this.data[0];
const bottom = this.data.pop();
this.length--;
if (this.length > 0) {
this.data[0] = bottom;
this._down(0);
}
return top;
}
peek() {
return this.data[0];
}
_up(pos) {
const {data, compare} = this;
const item = data[pos];
while (pos > 0) {
const parent = (pos - 1) >> 1;
const current = data[parent];
if (compare(item, current) >= 0) break;
data[pos] = current;
pos = parent;
}
data[pos] = item;
}
_down(pos) {
const {data, compare} = this;
const halfLength = this.length >> 1;
const item = data[pos];
while (pos < halfLength) {
let left = (pos << 1) + 1;
let best = data[left];
const right = left + 1;
if (right < this.length && compare(data[right], best) < 0) {
left = right;
best = data[right];
}
if (compare(best, item) >= 0) break;
data[pos] = best;
pos = left;
}
data[pos] = item;
}
}
function defaultCompare(a, b) {
return a < b ? -1 : a > b ? 1 : 0;
}
function checkWhichEventIsLeft (e1, e2) {
if (e1.p.x > e2.p.x) return 1
if (e1.p.x < e2.p.x) return -1
if (e1.p.y !== e2.p.y) return e1.p.y > e2.p.y ? 1 : -1
return 1
}
function checkWhichSegmentHasRightEndpointFirst (seg1, seg2) {
if (seg1.rightSweepEvent.p.x > seg2.rightSweepEvent.p.x) return 1
if (seg1.rightSweepEvent.p.x < seg2.rightSweepEvent.p.x) return -1
if (seg1.rightSweepEvent.p.y !== seg2.rightSweepEvent.p.y) return seg1.rightSweepEvent.p.y < seg2.rightSweepEvent.p.y ? 1 : -1
return 1
}
let Event$1 = class Event {
constructor (p, featureId, ringId, eventId) {
this.p = {
x: p[0],
y: p[1]
};
this.featureId = featureId;
this.ringId = ringId;
this.eventId = eventId;
this.otherEvent = null;
this.isLeftEndpoint = null;
}
isSamePoint (eventToCheck) {
return this.p.x === eventToCheck.p.x && this.p.y === eventToCheck.p.y
}
};
function fillEventQueue (geojson, eventQueue) {
if (geojson.type === 'FeatureCollection') {
const features = geojson.features;
for (let i = 0; i < features.length; i++) {
processFeature(features[i], eventQueue);
}
} else {
processFeature(geojson, eventQueue);
}
}
let featureId = 0;
let ringId = 0;
let eventId = 0;
function processFeature (featureOrGeometry, eventQueue) {
const geom = featureOrGeometry.type === 'Feature' ? featureOrGeometry.geometry : featureOrGeometry;
let coords = geom.coordinates;
// standardise the input
if (geom.type === 'Polygon' || geom.type === 'MultiLineString') coords = [coords];
if (geom.type === 'LineString') coords = [[coords]];
for (let i = 0; i < coords.length; i++) {
for (let ii = 0; ii < coords[i].length; ii++) {
let currentP = coords[i][ii][0];
let nextP = null;
ringId = ringId + 1;
for (let iii = 0; iii < coords[i][ii].length - 1; iii++) {
nextP = coords[i][ii][iii + 1];
const e1 = new Event$1(currentP, featureId, ringId, eventId);
const e2 = new Event$1(nextP, featureId, ringId, eventId + 1);
e1.otherEvent = e2;
e2.otherEvent = e1;
if (checkWhichEventIsLeft(e1, e2) > 0) {
e2.isLeftEndpoint = true;
e1.isLeftEndpoint = false;
} else {
e1.isLeftEndpoint = true;
e2.isLeftEndpoint = false;
}
eventQueue.push(e1);
eventQueue.push(e2);
currentP = nextP;
eventId = eventId + 1;
}
}
}
featureId = featureId + 1;
}
class Segment {
constructor (event) {
this.leftSweepEvent = event;
this.rightSweepEvent = event.otherEvent;
}
}
function testSegmentIntersect (seg1, seg2) {
if (seg1 === null || seg2 === null) return false
if (seg1.leftSweepEvent.ringId === seg2.leftSweepEvent.ringId &&
(seg1.rightSweepEvent.isSamePoint(seg2.leftSweepEvent) ||
seg1.rightSweepEvent.isSamePoint(seg2.leftSweepEvent) ||
seg1.rightSweepEvent.isSamePoint(seg2.rightSweepEvent) ||
seg1.leftSweepEvent.isSamePoint(seg2.leftSweepEvent) ||
seg1.leftSweepEvent.isSamePoint(seg2.rightSweepEvent))) return false
const x1 = seg1.leftSweepEvent.p.x;
const y1 = seg1.leftSweepEvent.p.y;
const x2 = seg1.rightSweepEvent.p.x;
const y2 = seg1.rightSweepEvent.p.y;
const x3 = seg2.leftSweepEvent.p.x;
const y3 = seg2.leftSweepEvent.p.y;
const x4 = seg2.rightSweepEvent.p.x;
const y4 = seg2.rightSweepEvent.p.y;
const denom = ((y4 - y3) * (x2 - x1)) - ((x4 - x3) * (y2 - y1));
const numeA = ((x4 - x3) * (y1 - y3)) - ((y4 - y3) * (x1 - x3));
const numeB = ((x2 - x1) * (y1 - y3)) - ((y2 - y1) * (x1 - x3));
if (denom === 0) {
if (numeA === 0 && numeB === 0) return false
return false
}
const uA = numeA / denom;
const uB = numeB / denom;
if (uA >= 0 && uA <= 1 && uB >= 0 && uB <= 1) {
const x = x1 + (uA * (x2 - x1));
const y = y1 + (uA * (y2 - y1));
return [x, y]
}
return false
}
// import {debugEventAndSegments, debugRemovingSegment} from './debug'
function runCheck (eventQueue, ignoreSelfIntersections) {
ignoreSelfIntersections = ignoreSelfIntersections ? ignoreSelfIntersections : false;
const intersectionPoints = [];
const outQueue = new TinyQueue([], checkWhichSegmentHasRightEndpointFirst);
while (eventQueue.length) {
const event = eventQueue.pop();
if (event.isLeftEndpoint) {
// debugEventAndSegments(event.p, outQueue.data)
const segment = new Segment(event);
for (let i = 0; i < outQueue.data.length; i++) {
const otherSeg = outQueue.data[i];
if (ignoreSelfIntersections) {
if (otherSeg.leftSweepEvent.featureId === event.featureId) continue
}
const intersection = testSegmentIntersect(segment, otherSeg);
if (intersection !== false) intersectionPoints.push(intersection);
}
outQueue.push(segment);
} else if (event.isLeftEndpoint === false) {
outQueue.pop();
// const seg = outQueue.pop()
// debugRemovingSegment(event.p, seg)
}
}
return intersectionPoints
}
function sweeplineIntersections$1 (geojson, ignoreSelfIntersections) {
const eventQueue = new TinyQueue([], checkWhichEventIsLeft);
fillEventQueue(geojson, eventQueue);
return runCheck(eventQueue, ignoreSelfIntersections)
}
// index.ts
var sweeplineIntersections = sweeplineIntersections$1;
// index.ts
function lineIntersect(line1, line2, options = {}) {
const { removeDuplicates = true, ignoreSelfIntersections = true } = options;
let features = [];
if (line1.type === "FeatureCollection")
features = features.concat(line1.features);
else if (line1.type === "Feature") features.push(line1);
else if (line1.type === "LineString" || line1.type === "Polygon" || line1.type === "MultiLineString" || line1.type === "MultiPolygon") {
features.push(feature(line1));
}
if (line2.type === "FeatureCollection")
features = features.concat(line2.features);
else if (line2.type === "Feature") features.push(line2);
else if (line2.type === "LineString" || line2.type === "Polygon" || line2.type === "MultiLineString" || line2.type === "MultiPolygon") {
features.push(feature(line2));
}
const intersections = sweeplineIntersections(
featureCollection(features),
ignoreSelfIntersections
);
let results = [];
if (removeDuplicates) {
const unique = {};
intersections.forEach((intersection) => {
const key = intersection.join(",");
if (!unique[key]) {
unique[key] = true;
results.push(intersection);
}
});
} else {
results = intersections;
}
return featureCollection(results.map((r) => point(r)));
}
// index.ts
function polygonToLine(poly, options = {}) {
const geom = getGeom(poly);
if (!options.properties && poly.type === "Feature") {
options.properties = poly.properties;
}
switch (geom.type) {
case "Polygon":
return singlePolygonToLine(geom, options);
case "MultiPolygon":
return multiPolygonToLine(geom, options);
default:
throw new Error("invalid poly");
}
}
function singlePolygonToLine(poly, options = {}) {
const geom = getGeom(poly);
const coords = geom.coordinates;
const properties = options.properties ? options.properties : poly.type === "Feature" ? poly.properties : {};
return coordsToLine(coords, properties);
}
function multiPolygonToLine(multiPoly, options = {}) {
const geom = getGeom(multiPoly);
const coords = geom.coordinates;
const properties = options.properties ? options.properties : multiPoly.type === "Feature" ? multiPoly.properties : {};
const lines = [];
coords.forEach((coord) => {
lines.push(coordsToLine(coord, properties));
});
return featureCollection(lines);
}
function coordsToLine(coords, properties) {
if (coords.length > 1) {
return multiLineString(coords, properties);
}
return lineString(coords[0], properties);
}
// index.ts
function booleanDisjoint(feature1, feature2, {
ignoreSelfIntersections = true
} = { ignoreSelfIntersections: true }) {
let bool = true;
flattenEach(feature1, (flatten1) => {
flattenEach(feature2, (flatten2) => {
if (bool === false) {
return false;
}
bool = disjoint(
flatten1.geometry,
flatten2.geometry,
ignoreSelfIntersections
);
});
});
return bool;
}
function disjoint(geom1, geom2, ignoreSelfIntersections) {
switch (geom1.type) {
case "Point":
switch (geom2.type) {
case "Point":
return !compareCoords$1(geom1.coordinates, geom2.coordinates);
case "LineString":
return !isPointOnLine(geom2, geom1);
case "Polygon":
return !booleanPointInPolygon(geom1, geom2);
}
break;
case "LineString":
switch (geom2.type) {
case "Point":
return !isPointOnLine(geom1, geom2);
case "LineString":
return !isLineOnLine$1(geom1, geom2, ignoreSelfIntersections);
case "Polygon":
return !isLineInPoly$1(geom2, geom1, ignoreSelfIntersections);
}
break;
case "Polygon":
switch (geom2.type) {
case "Point":
return !booleanPointInPolygon(geom2, geom1);
case "LineString":
return !isLineInPoly$1(geom1, geom2, ignoreSelfIntersections);
case "Polygon":
return !isPolyInPoly$1(geom2, geom1, ignoreSelfIntersections);
}
}
return false;
}
function isPointOnLine(lineString, pt) {
for (let i = 0; i < lineString.coordinates.length - 1; i++) {
if (isPointOnLineSegment(
lineString.coordinates[i],
lineString.coordinates[i + 1],
pt.coordinates
)) {
return true;
}
}
return false;
}
function isLineOnLine$1(lineString1, lineString2, ignoreSelfIntersections) {
const doLinesIntersect = lineIntersect(lineString1, lineString2, {
ignoreSelfIntersections
});
if (doLinesIntersect.features.length > 0) {
return true;
}
return false;
}
function isLineInPoly$1(polygon, lineString, ignoreSelfIntersections) {
for (const coord of lineString.coordinates) {
if (booleanPointInPolygon(coord, polygon)) {
return true;
}
}
const doLinesIntersect = lineIntersect(lineString, polygonToLine(polygon), {
ignoreSelfIntersections
});
if (doLinesIntersect.features.length > 0) {
return true;
}
return false;
}
function isPolyInPoly$1(feature1, feature2, ignoreSelfIntersections) {
for (const coord1 of feature1.coordinates[0]) {
if (booleanPointInPolygon(coord1, feature2)) {
return true;
}
}
for (const coord2 of feature2.coordinates[0]) {
if (booleanPointInPolygon(coord2, feature1)) {
return true;
}
}
const doLinesIntersect = lineIntersect(
polygonToLine(feature1),
polygonToLine(feature2),
{ ignoreSelfIntersections }
);
if (doLinesIntersect.features.length > 0) {
return true;
}
return false;
}
function isPointOnLineSegment(lineSegmentStart, lineSegmentEnd, pt) {
const dxc = pt[0] - lineSegmentStart[0];
const dyc = pt[1] - lineSegmentStart[1];
const dxl = lineSegmentEnd[0] - lineSegmentStart[0];
const dyl = lineSegmentEnd[1] - lineSegmentStart[1];
const cross = dxc * dyl - dyc * dxl;
if (cross !== 0) {
return false;
}
if (Math.abs(dxl) >= Math.abs(dyl)) {
if (dxl > 0) {
return lineSegmentStart[0] <= pt[0] && pt[0] <= lineSegmentEnd[0];
} else {
return lineSegmentEnd[0] <= pt[0] && pt[0] <= lineSegmentStart[0];
}
} else if (dyl > 0) {
return lineSegmentStart[1] <= pt[1] && pt[1] <= lineSegmentEnd[1];
} else {
return lineSegmentEnd[1] <= pt[1] && pt[1] <= lineSegmentStart[1];
}
}
function compareCoords$1(pair1, pair2) {
return pair1[0] === pair2[0] && pair1[1] === pair2[1];
}
// index.ts
function booleanIntersects(feature1, feature2, {
ignoreSelfIntersections = true
} = {}) {
let bool = false;
flattenEach(feature1, (flatten1) => {
flattenEach(feature2, (flatten2) => {
if (bool === true) {
return true;
}
bool = !booleanDisjoint(flatten1.geometry, flatten2.geometry, {
ignoreSelfIntersections
});
});
});
return bool;
}
var __defProp = Object.defineProperty;
var __defProps = Object.defineProperties;
var __getOwnPropDescs = Object.getOwnPropertyDescriptors;
var __getOwnPropSymbols = Object.getOwnPropertySymbols;
var __hasOwnProp = Object.prototype.hasOwnProperty;
var __propIsEnum = Object.prototype.propertyIsEnumerable;
var __defNormalProp = (obj, key, value) => key in obj ? __defProp(obj, key, { enumerable: true, configurable: true, writable: true, value }) : obj[key] = value;
var __spreadValues = (a, b) => {
for (var prop in b || (b = {}))
if (__hasOwnProp.call(b, prop))
__defNormalProp(a, prop, b[prop]);
if (__getOwnPropSymbols)
for (var prop of __getOwnPropSymbols(b)) {
if (__propIsEnum.call(b, prop))
__defNormalProp(a, prop, b[prop]);
}
return a;
};
var __spreadProps = (a, b) => __defProps(a, __getOwnPropDescs(b));
function nearestPointOnLine(lines, pt, options = {}) {
if (!lines || !pt) {
throw new Error("lines and pt are required arguments");
}
const ptPos = getCoord(pt);
let closestPt = point([Infinity, Infinity], {
dist: Infinity,
index: -1,
multiFeatureIndex: -1,
location: -1
});
let length = 0;
flattenEach(
lines,
function(line, _featureIndex, multiFeatureIndex) {
const coords = getCoords(line);
for (let i = 0; i < coords.length - 1; i++) {
const start = point(coords[i]);
start.properties.dist = distance(pt, start, options);
const startPos = getCoord(start);
const stop = point(coords[i + 1]);
stop.properties.dist = distance(pt, stop, options);
const stopPos = getCoord(stop);
const sectionLength = distance(start, stop, options);
let intersectPos;
let wasEnd;
if (startPos[0] === ptPos[0] && startPos[1] === ptPos[1]) {
[intersectPos, , wasEnd] = [startPos, void 0, false];
} else if (stopPos[0] === ptPos[0] && stopPos[1] === ptPos[1]) {
[intersectPos, , wasEnd] = [stopPos, void 0, true];
} else {
[intersectPos, , wasEnd] = nearestPointOnSegment(
start.geometry.coordinates,
stop.geometry.coordinates,
getCoord(pt)
);
}
let intersectPt;
if (intersectPos) {
intersectPt = point(intersectPos, {
dist: distance(pt, intersectPos, options),
multiFeatureIndex,
location: length + distance(start, intersectPos, options)
});
}
if (intersectPt && intersectPt.properties.dist < closestPt.properties.dist) {
closestPt = __spreadProps(__spreadValues({}, intersectPt), {
properties: __spreadProps(__spreadValues({}, intersectPt.properties), {
// Legacy behaviour where index progresses to next segment # if we
// went with the end point this iteration.
index: wasEnd ? i + 1 : i
})
});
}
length += sectionLength;
}
}
);
return closestPt;
}
function dot$1(v1, v2) {
const [v1x, v1y, v1z] = v1;
const [v2x, v2y, v2z] = v2;
return v1x * v2x + v1y * v2y + v1z * v2z;
}
function cross(v1, v2) {
const [v1x, v1y, v1z] = v1;
const [v2x, v2y, v2z] = v2;
return [v1y * v2z - v1z * v2y, v1z * v2x - v1x * v2z, v1x * v2y - v1y * v2x];
}
function magnitude(v) {
return Math.sqrt(Math.pow(v[0], 2) + Math.pow(v[1], 2) + Math.pow(v[2], 2));
}
function angle(v1, v2) {
const theta = dot$1(v1, v2) / (magnitude(v1) * magnitude(v2));
return Math.acos(Math.min(Math.max(theta, -1), 1));
}
function lngLatToVector(a) {
const lat = degreesToRadians(a[1]);
const lng = degreesToRadians(a[0]);
return [
Math.cos(lat) * Math.cos(lng),
Math.cos(lat) * Math.sin(lng),
Math.sin(lat)
];
}
function vectorToLngLat(v) {
const [x, y, z] = v;
const lat = radiansToDegrees(Math.asin(z));
const lng = radiansToDegrees(Math.atan2(y, x));
return [lng, lat];
}
function nearestPointOnSegment(posA, posB, posC) {
const A = lngLatToVector(posA);
const B = lngLatToVector(posB);
const C = lngLatToVector(posC);
const [Cx, Cy, Cz] = C;
const [D, E, F] = cross(A, B);
const a = E * Cz - F * Cy;
const b = F * Cx - D * Cz;
const c = D * Cy - E * Cx;
const f = c * E - b * F;
const g = a * F - c * D;
const h = b * D - a * E;
const t = 1 / Math.sqrt(Math.pow(f, 2) + Math.pow(g, 2) + Math.pow(h, 2));
const I1 = [f * t, g * t, h * t];
const I2 = [-1 * f * t, -1 * g * t, -1 * h * t];
const angleAB = angle(A, B);
const angleAI1 = angle(A, I1);
const angleBI1 = angle(B, I1);
const angleAI2 = angle(A, I2);
const angleBI2 = angle(B, I2);
let I;
if (angleAI1 < angleAI2 && angleAI1 < angleBI2 || angleBI1 < angleAI2 && angleBI1 < angleBI2) {
I = I1;
} else {
I = I2;
}
if (angle(A, I) > angleAB || angle(B, I) > angleAB) {
if (distance(vectorToLngLat(I), vectorToLngLat(A)) <= distance(vectorToLngLat(I), vectorToLngLat(B))) {
return [vectorToLngLat(A), true, false];
} else {
return [vectorToLngLat(B), false, true];
}
}
return [vectorToLngLat(I), false, false];
}
// index.ts
function booleanWithin(feature1, feature2) {
var geom1 = getGeom(feature1);
var geom2 = getGeom(feature2);
var type1 = geom1.type;
var type2 = geom2.type;
switch (type1) {
case "Point":
switch (type2) {
case "MultiPoint":
return isPointInMultiPoint(geom1, geom2);
case "LineString":
return booleanPointOnLine(geom1, geom2, { ignoreEndVertices: true });
case "Polygon":
case "MultiPolygon":
return booleanPointInPolygon(geom1, geom2, { ignoreBoundary: true });
default:
throw new Error("feature2 " + type2 + " geometry not supported");
}
case "MultiPoint":
switch (type2) {
case "MultiPoint":
return isMultiPointInMultiPoint(geom1, geom2);
case "LineString":
return isMultiPointOnLine(geom1, geom2);
case "Polygon":
case "MultiPolygon":
return isMultiPointInPoly(geom1, geom2);
default:
throw new Error("feature2 " + type2 + " geometry not supported");
}
case "LineString":
switch (type2) {
case "LineString":
return isLineOnLine(geom1, geom2);
case "Polygon":
case "MultiPolygon":
return isLineInPoly(geom1, geom2);
default:
throw new Error("feature2 " + type2 + " geometry not supported");
}
case "Polygon":
switch (type2) {
case "Polygon":
case "MultiPolygon":
return isPolyInPoly(geom1, geom2);
default:
throw new Error("feature2 " + type2 + " geometry not supported");
}
default:
throw new Error("feature1 " + type1 + " geometry not supported");
}
}
function isPointInMultiPoint(point, multiPoint) {
var i;
var output = false;
for (i = 0; i < multiPoint.coordinates.length; i++) {
if (compareCoords(multiPoint.coordinates[i], point.coordinates)) {
output = true;
break;
}
}
return output;
}
function isMultiPointInMultiPoint(multiPoint1, multiPoint2) {
for (var i = 0; i < multiPoint1.coordinates.length; i++) {
var anyMatch = false;
for (var i2 = 0; i2 < multiPoint2.coordinates.length; i2++) {
if (compareCoords(multiPoint1.coordinates[i], multiPoint2.coordinates[i2])) {
anyMatch = true;
}
}
if (!anyMatch) {
return false;
}
}
return true;
}
function isMultiPointOnLine(multiPoint, lineString) {
var foundInsidePoint = false;
for (var i = 0; i < multiPoint.coordinates.length; i++) {
if (!booleanPointOnLine(multiPoint.coordinates[i], lineString)) {
return false;
}
if (!foundInsidePoint) {
foundInsidePoint = booleanPointOnLine(
multiPoint.coordinates[i],
lineString,
{ ignoreEndVertices: true }
);
}
}
return foundInsidePoint;
}
function isMultiPointInPoly(multiPoint, polygon) {
var output = true;
var isInside = false;
for (var i = 0; i < multiPoint.coordinates.length; i++) {
isInside = booleanPointInPolygon(multiPoint.coordinates[i], polygon);
if (!isInside) {
output = false;
break;
}
{
isInside = booleanPointInPolygon(multiPoint.coordinates[i], polygon, {
ignoreBoundary: true
});
}
}
return output && isInside;
}
function isLineOnLine(lineString1, lineString2) {
for (var i = 0; i < lineString1.coordinates.length; i++) {
if (!booleanPointOnLine(lineString1.coordinates[i], lineString2)) {
return false;
}
}
return true;
}
function isLineInPoly(linestring, polygon) {
var polyBbox = bbox(polygon);
var lineBbox = bbox(linestring);
if (!doBBoxOverlap(polyBbox, lineBbox)) {
return false;
}
var foundInsidePoint = false;
for (var i = 0; i < linestring.coordinates.length; i++) {
if (!booleanPointInPolygon(linestring.coordinates[i], polygon)) {
return false;
}
if (!foundInsidePoint) {
foundInsidePoint = booleanPointInPolygon(
linestring.coordinates[i],
polygon,
{ ignoreBoundary: true }
);
}
if (!foundInsidePoint && i < linestring.coordinates.length - 1) {
var midpoint = getMidpoint(
linestring.coordinates[i],
linestring.coordinates[i + 1]
);
foundInsidePoint = booleanPointInPolygon(midpoint, polygon, {
ignoreBoundary: true
});
}
}
return foundInsidePoint;
}
function isPolyInPoly(geometry1, geometry2) {
var poly1Bbox = bbox(geometry1);
var poly2Bbox = bbox(geometry2);
if (!doBBoxOverlap(poly2Bbox, poly1Bbox)) {
return false;
}
for (var i = 0; i < geometry1.coordinates[0].length; i++) {
if (!booleanPointInPolygon(geometry1.coordinates[0][i], geometry2)) {
return false;
}
}
return true;
}
function doBBoxOverlap(bbox1, bbox2) {
if (bbox1[0] > bbox2[0]) return false;
if (bbox1[2] < bbox2[2]) return false;
if (bbox1[1] > bbox2[1]) return false;
if (bbox1[3] < bbox2[3]) return false;
return true;
}
function compareCoords(pair1, pair2) {
return pair1[0] === pair2[0] && pair1[1] === pair2[1];
}
function getMidpoint(pair1, pair2) {
return [(pair1[0] + pair2[0]) / 2, (pair1[1] + pair2[1]) / 2];
}
// index.ts
function centroid(geojson, options = {}) {
let xSum = 0;
let ySum = 0;
let len = 0;
coordEach(
geojson,
function(coord) {
xSum += coord[0];
ySum += coord[1];
len++;
},
true
);
return point([xSum / len, ySum / len], options.properties);
}
// index.ts
function clone(geojson) {
if (!geojson) {
throw new Error("geojson is required");
}
switch (geojson.type) {
case "Feature":
return cloneFeature(geojson);
case "FeatureCollection":
return cloneFeatureCollection(geojson);
case "Point":
case "LineString":
case "Polygon":
case "MultiPoint":
case "MultiLineString":
case "MultiPolygon":
case "GeometryCollection":
return cloneGeometry(geojson);
default:
throw new Error("unknown GeoJSON type");
}
}
function cloneFeature(geojson) {
const cloned = { type: "Feature" };
Object.keys(geojson).forEach((key) => {
switch (key) {
case "type":
case "properties":
case "geometry":
return;
default:
cloned[key] = geojson[key];
}
});
cloned.properties = cloneProperties(geojson.properties);
if (geojson.geometry == null) {
cloned.geometry = null;
} else {
cloned.geometry = cloneGeometry(geojson.geometry);
}
return cloned;
}
function cloneProperties(properties) {
const cloned = {};
if (!properties) {
return cloned;
}
Object.keys(properties).forEach((key) => {
const value = properties[key];
if (typeof value === "object") {
if (value === null) {
cloned[key] = null;
} else if (Array.isArray(value)) {
cloned[key] = value.map((item) => {
return item;
});
} else {
cloned[key] = cloneProperties(value);
}
} else {
cloned[key] = value;
}
});
return cloned;
}
function cloneFeatureCollection(geojson) {
const cloned = { type: "FeatureCollection" };
Object.keys(geojson).forEach((key) => {
switch (key) {
case "type":
case "features":
return;
default:
cloned[key] = geojson[key];
}
});
cloned.features = geojson.features.map((feature) => {
return cloneFeature(feature);
});
return cloned;
}
function cloneGeometry(geometry) {
const geom = { type: geometry.type };
if (geometry.bbox) {
geom.bbox = geometry.bbox;
}
if (geometry.type === "GeometryCollection") {
geom.geometries = geometry.geometries.map((g) => {
return cloneGeometry(g);
});
return geom;
}
geom.coordinates = deepSlice(geometry.coordinates);
return geom;
}
function deepSlice(coords) {
const cloned = coords;
if (typeof cloned[0] !== "object") {
return cloned.slice();
}
return cloned.map((coord) => {
return deepSlice(coord);
});
}
// index.ts
function rhumbDestination(origin, distance, bearing, options = {}) {
const wasNegativeDistance = distance < 0;
let distanceInMeters = convertLength(
Math.abs(distance),
options.units,
"meters"
);
if (wasNegativeDistance) distanceInMeters = -Math.abs(distanceInMeters);
const coords = getCoord(origin);
const destination = calculateRhumbDestination(
coords,
distanceInMeters,
bearing
);
destination[0] += destination[0] - coords[0] > 180 ? -360 : coords[0] - destination[0] > 180 ? 360 : 0;
return point(destination, options.properties);
}
function calculateRhumbDestination(origin, distance, bearing, radius) {
radius = radius === void 0 ? earthRadius : Number(radius);
const delta = distance / radius;
const lambda1 = origin[0] * Math.PI / 180;
const phi1 = degreesToRadians(origin[1]);
const theta = degreesToRadians(bearing);
const DeltaPhi = delta * Math.cos(theta);
let phi2 = phi1 + DeltaPhi;
if (Math.abs(phi2) > Math.PI / 2) {
phi2 = phi2 > 0 ? Math.PI - phi2 : -Math.PI - phi2;
}
const DeltaPsi = Math.log(
Math.tan(phi2 / 2 + Math.PI / 4) / Math.tan(phi1 / 2 + Math.PI / 4)
);
const q = Math.abs(DeltaPsi) > 1e-11 ? DeltaPhi / DeltaPsi : Math.cos(phi1);
const DeltaLambda = delta * Math.sin(theta) / q;
const lambda2 = lambda1 + DeltaLambda;
return [
(lambda2 * 180 / Math.PI + 540) % 360 - 180,
phi2 * 180 / Math.PI
];
}
// index.ts
function rhumbDistance(from, to, options = {}) {
const origin = getCoord(from);
const destination = getCoord(to);
destination[0] += destination[0] - origin[0] > 180 ? -360 : origin[0] - destination[0] > 180 ? 360 : 0;
const distanceInMeters = calculateRhumbDistance(origin, destination);
const distance = convertLength(distanceInMeters, "meters", options.units);
return distance;
}
function calculateRhumbDistance(origin, destination, radius) {
radius = radius === void 0 ? earthRadius : Number(radius);
const R = radius;
const phi1 = origin[1] * Math.PI / 180;
const phi2 = destination[1] * Math.PI / 180;
const DeltaPhi = phi2 - phi1;
let DeltaLambda = Math.abs(destination[0] - origin[0]) * Math.PI / 180;
if (DeltaLambda > Math.PI) {
DeltaLambda -= 2 * Math.PI;
}
const DeltaPsi = Math.log(
Math.tan(phi2 / 2 + Math.PI / 4) / Math.tan(phi1 / 2 + Math.PI / 4)
);
const q = Math.abs(DeltaPsi) > 1e-11 ? DeltaPhi / DeltaPsi : Math.cos(phi1);
const delta = Math.sqrt(
DeltaPhi * DeltaPhi + q * q * DeltaLambda * DeltaLambda
);
const dist = delta * R;
return dist;
}
// index.ts
function transformRotate(geojson, angle, options) {
options = options || {};
if (!isObject(options)) throw new Error("options is invalid");
const pivot = options.pivot;
const mutate = options.mutate;
if (!geojson) throw new Error("geojson is required");
if (angle === void 0 || angle === null || isNaN(angle))
throw new Error("angle is required");
if (angle === 0) return geojson;
const pivotCoord = pivot != null ? pivot : centroid(geojson);
if (mutate === false || mutate === void 0) geojson = clone(geojson);
coordEach(geojson, function(pointCoords) {
const initialAngle = rhumbBearing(pivotCoord, pointCoords);
const finalAngle = initialAngle + angle;
const distance = rhumbDistance(pivotCoord, pointCoords);
const newCoords = getCoords(
rhumbDestination(pivotCoord, distance, finalAngle)
);
pointCoords[0] = newCoords[0];
pointCoords[1] = newCoords[1];
});
return geojson;
}
// index.ts
function pointToLineDistance(pt, line, options = {}) {
var _a, _b;
const method = (_a = options.method) != null ? _a : "geodesic";
const units = (_b = options.units) != null ? _b : "kilometers";
if (!pt) {
throw new Error("pt is required");
}
if (Array.isArray(pt)) {
pt = point(pt);
} else if (pt.type === "Point") {
pt = feature(pt);
} else {
featureOf(pt, "Point", "point");
}
if (!line) {
throw new Error("line is required");
}
if (Array.isArray(line)) {
line = lineString(line);
} else if (line.type === "LineString") {
line = feature(line);
} else {
featureOf(line, "LineString", "line");
}
let distance = Infinity;
const p = pt.geometry.coordinates;
segmentEach(line, (segment) => {
if (segment) {
const a = segment.geometry.coordinates[0];
const b = segment.geometry.coordinates[1];
const d = distanceToSegment(p, a, b, { method });
if (d < distance) {
distance = d;
}
}
});
return convertLength(distance, "degrees", units);
}
function distanceToSegment(p, a, b, options) {
if (options.method === "geodesic") {
const nearest = nearestPointOnLine(lineString([a, b]).geometry, p, {
units: "degrees"
});
return nearest.properties.dist;
}
const v = [b[0] - a[0], b[1] - a[1]];
const w = [p[0] - a[0], p[1] - a[1]];
const c1 = dot(w, v);
if (c1 <= 0) {
return rhumbDistance(p, a, { units: "degrees" });
}
const c2 = dot(v, v);
if (c2 <= c1) {
return rhumbDistance(p, b, { units: "degrees" });
}
const b2 = c1 / c2;
const Pb = [a[0] + b2 * v[0], a[1] + b2 * v[1]];
return rhumbDistance(p, Pb, { units: "degrees" });
}
function dot(u, v) {
return u[0] * v[0] + u[1] * v[1];
}
function globals(defs) {
defs('EPSG:4326', "+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees");
defs('EPSG:4269', "+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees");
defs('EPSG:3857', "+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs");
// UTM WGS84
for (var i = 0; i <= 60; ++i) {
defs('EPSG:' + (32600 + i), "+proj=utm +zone=" + i + " +datum=WGS84 +units=m");
defs('EPSG:' + (32700 + i), "+proj=utm +zone=" + i + " +south +datum=WGS84 +units=m");
}
defs.WGS84 = defs['EPSG:4326'];
defs['EPSG:3785'] = defs['EPSG:3857']; // maintain backward compat, official code is 3857
defs.GOOGLE = defs['EPSG:3857'];
defs['EPSG:900913'] = defs['EPSG:3857'];
defs['EPSG:102113'] = defs['EPSG:3857'];
}
var PJD_3PARAM = 1;
var PJD_7PARAM = 2;
var PJD_GRIDSHIFT = 3;
var PJD_WGS84 = 4; // WGS84 or equivalent
var PJD_NODATUM = 5; // WGS84 or equivalent
var SRS_WGS84_SEMIMAJOR = 6378137.0; // only used in grid shift transforms
var SRS_WGS84_SEMIMINOR = 6356752.314; // only used in grid shift transforms
var SRS_WGS84_ESQUARED = 0.0066943799901413165; // only used in grid shift transforms
var SEC_TO_RAD = 4.84813681109535993589914102357e-6;
var HALF_PI = Math.PI/2;
// ellipoid pj_set_ell.c
var SIXTH = 0.1666666666666666667;
/* 1/6 */
var RA4 = 0.04722222222222222222;
/* 17/360 */
var RA6 = 0.02215608465608465608;
var EPSLN = 1.0e-10;
// you'd think you could use Number.EPSILON above but that makes
// Mollweide get into an infinate loop.
var D2R$1 = 0.01745329251994329577;
var R2D = 57.29577951308232088;
var FORTPI = Math.PI/4;
var TWO_PI = Math.PI * 2;
// SPI is slightly greater than Math.PI, so values that exceed the -180..180
// degree range by a tiny amount don't get wrapped. This prevents points that
// have drifted from their original location along the 180th meridian (due to
// floating point error) from changing their sign.
var SPI = 3.14159265359;
var exports$2 = {};
exports$2.greenwich = 0.0; //"0dE",
exports$2.lisbon = -9.131906111111; //"9d07'54.862\"W",
exports$2.paris = 2.337229166667; //"2d20'14.025\"E",
exports$2.bogota = -74.080916666667; //"74d04'51.3\"W",
exports$2.madrid = -3.687938888889; //"3d41'16.58\"W",
exports$2.rome = 12.452333333333; //"12d27'8.4\"E",
exports$2.bern = 7.439583333333; //"7d26'22.5\"E",
exports$2.jakarta = 106.807719444444; //"106d48'27.79\"E",
exports$2.ferro = -17.666666666667; //"17d40'W",
exports$2.brussels = 4.367975; //"4d22'4.71\"E",
exports$2.stockholm = 18.058277777778; //"18d3'29.8\"E",
exports$2.athens = 23.7163375; //"23d42'58.815\"E",
exports$2.oslo = 10.722916666667; //"10d43'22.5\"E"
var units = {
'mm': {to_meter: 0.001},
'cm': {to_meter: 0.01},
'ft': {to_meter: 0.3048},
'us-ft': {to_meter: 1200 / 3937},
'fath': {to_meter: 1.8288},
'kmi': {to_meter: 1852},
'us-ch': {to_meter: 20.1168402336805},
'us-mi': {to_meter: 1609.34721869444},
'km': {to_meter: 1000},
'ind-ft': {to_meter: 0.30479841},
'ind-yd': {to_meter: 0.91439523},
'mi': {to_meter: 1609.344},
'yd': {to_meter: 0.9144},
'ch': {to_meter: 20.1168},
'link': {to_meter: 0.201168},
'dm': {to_meter: 0.01},
'in': {to_meter: 0.0254},
'ind-ch': {to_meter: 20.11669506},
'us-in': {to_meter: 0.025400050800101},
'us-yd': {to_meter: 0.914401828803658}
};
var ignoredChar = /[\s_\-\/\(\)]/g;
function match(obj, key) {
if (obj[key]) {
return obj[key];
}
var keys = Object.keys(obj);
var lkey = key.toLowerCase().replace(ignoredChar, '');
var i = -1;
var testkey, processedKey;
while (++i < keys.length) {
testkey = keys[i];
processedKey = testkey.toLowerCase().replace(ignoredChar, '');
if (processedKey === lkey) {
return obj[testkey];
}
}
}
function projStr(defData) {
var self = {};
var paramObj = defData.split('+').map(function(v) {
return v.trim();
}).filter(function(a) {
return a;
}).reduce(function(p, a) {
var split = a.split('=');
split.push(true);
p[split[0].toLowerCase()] = split[1];
return p;
}, {});
var paramName, paramVal, paramOutname;
var params = {
proj: 'projName',
datum: 'datumCode',
rf: function(v) {
self.rf = parseFloat(v);
},
lat_0: function(v) {
self.lat0 = v * D2R$1;
},
lat_1: function(v) {
self.lat1 = v * D2R$1;
},
lat_2: function(v) {
self.lat2 = v * D2R$1;
},
lat_ts: function(v) {
self.lat_ts = v * D2R$1;
},
lon_0: function(v) {
self.long0 = v * D2R$1;
},
lon_1: function(v) {
self.long1 = v * D2R$1;
},
lon_2: function(v) {
self.long2 = v * D2R$1;
},
alpha: function(v) {
self.alpha = parseFloat(v) * D2R$1;
},
gamma: function(v) {
self.rectified_grid_angle = parseFloat(v);
},
lonc: function(v) {
self.longc = v * D2R$1;
},
x_0: function(v) {
self.x0 = parseFloat(v);
},
y_0: function(v) {
self.y0 = parseFloat(v);
},
k_0: function(v) {
self.k0 = parseFloat(v);
},
k: function(v) {
self.k0 = parseFloat(v);
},
a: function(v) {
self.a = parseFloat(v);
},
b: function(v) {
self.b = parseFloat(v);
},
r: function(v) {
self.a = self.b = parseFloat(v);
},
r_a: function() {
self.R_A = true;
},
zone: function(v) {
self.zone = parseInt(v, 10);
},
south: function() {
self.utmSouth = true;
},
towgs84: function(v) {
self.datum_params = v.split(",").map(function(a) {
return parseFloat(a);
});
},
to_meter: function(v) {
self.to_meter = parseFloat(v);
},
units: function(v) {
self.units = v;
var unit = match(units, v);
if (unit) {
self.to_meter = unit.to_meter;
}
},
from_greenwich: function(v) {
self.from_greenwich = v * D2R$1;
},
pm: function(v) {
var pm = match(exports$2, v);
self.from_greenwich = (pm ? pm : parseFloat(v)) * D2R$1;
},
nadgrids: function(v) {
if (v === '@null') {
self.datumCode = 'none';
}
else {
self.nadgrids = v;
}
},
axis: function(v) {
var legalAxis = "ewnsud";
if (v.length === 3 && legalAxis.indexOf(v.substr(0, 1)) !== -1 && legalAxis.indexOf(v.substr(1, 1)) !== -1 && legalAxis.indexOf(v.substr(2, 1)) !== -1) {
self.axis = v;
}
},
approx: function() {
self.approx = true;
}
};
for (paramName in paramObj) {
paramVal = paramObj[paramName];
if (paramName in params) {
paramOutname = params[paramName];
if (typeof paramOutname === 'function') {
paramOutname(paramVal);
}
else {
self[paramOutname] = paramVal;
}
}
else {
self[paramName] = paramVal;
}
}
if(typeof self.datumCode === 'string' && self.datumCode !== "WGS84"){
self.datumCode = self.datumCode.toLowerCase();
}
return self;
}
class PROJJSONBuilderBase {
static getId(node) {
const idNode = node.find((child) => Array.isArray(child) && child[0] === 'ID');
if (idNode && idNode.length >= 3) {
return {
authority: idNode[1],
code: parseInt(idNode[2], 10),
};
}
return null;
}
static convertUnit(node, type = 'unit') {
if (!node || node.length < 3) {
return { type, name: 'unknown', conversion_factor: null };
}
const name = node[1];
const conversionFactor = parseFloat(node[2]) || null;
const idNode = node.find((child) => Array.isArray(child) && child[0] === 'ID');
const id = idNode
? {
authority: idNode[1],
code: parseInt(idNode[2], 10),
}
: null;
return {
type,
name,
conversion_factor: conversionFactor,
id,
};
}
static convertAxis(node) {
const name = node[1] || 'Unknown';
// Determine the direction
let direction;
const abbreviationMatch = name.match(/^\((.)\)$/); // Match abbreviations like "(E)" or "(N)"
if (abbreviationMatch) {
// Use the abbreviation to determine the direction
const abbreviation = abbreviationMatch[1].toUpperCase();
if (abbreviation === 'E') direction = 'east';
else if (abbreviation === 'N') direction = 'north';
else if (abbreviation === 'U') direction = 'up';
else throw new Error(`Unknown axis abbreviation: ${abbreviation}`);
} else {
// Use the explicit direction provided in the AXIS node
direction = node[2] ? node[2].toLowerCase() : 'unknown';
}
const orderNode = node.find((child) => Array.isArray(child) && child[0] === 'ORDER');
const order = orderNode ? parseInt(orderNode[1], 10) : null;
const unitNode = node.find(
(child) =>
Array.isArray(child) &&
(child[0] === 'LENGTHUNIT' || child[0] === 'ANGLEUNIT' || child[0] === 'SCALEUNIT')
);
const unit = this.convertUnit(unitNode);
return {
name,
direction, // Use the valid PROJJSON direction value
unit,
order,
};
}
static extractAxes(node) {
return node
.filter((child) => Array.isArray(child) && child[0] === 'AXIS')
.map((axis) => this.convertAxis(axis))
.sort((a, b) => (a.order || 0) - (b.order || 0)); // Sort by the "order" property
}
static convert(node, result = {}) {
switch (node[0]) {
case 'PROJCRS':
result.type = 'ProjectedCRS';
result.name = node[1];
result.base_crs = node.find((child) => Array.isArray(child) && child[0] === 'BASEGEOGCRS')
? this.convert(node.find((child) => Array.isArray(child) && child[0] === 'BASEGEOGCRS'))
: null;
result.conversion = node.find((child) => Array.isArray(child) && child[0] === 'CONVERSION')
? this.convert(node.find((child) => Array.isArray(child) && child[0] === 'CONVERSION'))
: null;
const csNode = node.find((child) => Array.isArray(child) && child[0] === 'CS');
if (csNode) {
result.coordinate_system = {
type: csNode[1],
axis: this.extractAxes(node),
};
}
const lengthUnitNode = node.find((child) => Array.isArray(child) && child[0] === 'LENGTHUNIT');
if (lengthUnitNode) {
const unit = this.convertUnit(lengthUnitNode);
result.coordinate_system.unit = unit; // Add unit to coordinate_system
}
result.id = this.getId(node);
break;
case 'BASEGEOGCRS':
case 'GEOGCRS':
result.type = 'GeographicCRS';
result.name = node[1];
// Handle DATUM or ENSEMBLE
const datumOrEnsembleNode = node.find(
(child) => Array.isArray(child) && (child[0] === 'DATUM' || child[0] === 'ENSEMBLE')
);
if (datumOrEnsembleNode) {
const datumOrEnsemble = this.convert(datumOrEnsembleNode);
if (datumOrEnsembleNode[0] === 'ENSEMBLE') {
result.datum_ensemble = datumOrEnsemble;
} else {
result.datum = datumOrEnsemble;
}
const primem = node.find((child) => Array.isArray(child) && child[0] === 'PRIMEM');
if (primem && primem[1] !== 'Greenwich') {
datumOrEnsemble.prime_meridian = {
name: primem[1],
longitude: parseFloat(primem[2]),
};
}
}
result.coordinate_system = {
type: 'ellipsoidal',
axis: this.extractAxes(node),
};
result.id = this.getId(node);
break;
case 'DATUM':
result.type = 'GeodeticReferenceFrame';
result.name = node[1];
result.ellipsoid = node.find((child) => Array.isArray(child) && child[0] === 'ELLIPSOID')
? this.convert(node.find((child) => Array.isArray(child) && child[0] === 'ELLIPSOID'))
: null;
break;
case 'ENSEMBLE':
result.type = 'DatumEnsemble';
result.name = node[1];
// Extract ensemble members
result.members = node
.filter((child) => Array.isArray(child) && child[0] === 'MEMBER')
.map((member) => ({
type: 'DatumEnsembleMember',
name: member[1],
id: this.getId(member), // Extract ID as { authority, code }
}));
// Extract accuracy
const accuracyNode = node.find((child) => Array.isArray(child) && child[0] === 'ENSEMBLEACCURACY');
if (accuracyNode) {
result.accuracy = parseFloat(accuracyNode[1]);
}
// Extract ellipsoid
const ellipsoidNode = node.find((child) => Array.isArray(child) && child[0] === 'ELLIPSOID');
if (ellipsoidNode) {
result.ellipsoid = this.convert(ellipsoidNode); // Convert the ellipsoid node
}
// Extract identifier for the ensemble
result.id = this.getId(node);
break;
case 'ELLIPSOID':
result.type = 'Ellipsoid';
result.name = node[1];
result.semi_major_axis = parseFloat(node[2]);
result.inverse_flattening = parseFloat(node[3]);
node.find((child) => Array.isArray(child) && child[0] === 'LENGTHUNIT')
? this.convert(node.find((child) => Array.isArray(child) && child[0] === 'LENGTHUNIT'), result)
: null;
break;
case 'CONVERSION':
result.type = 'Conversion';
result.name = node[1];
result.method = node.find((child) => Array.isArray(child) && child[0] === 'METHOD')
? this.convert(node.find((child) => Array.isArray(child) && child[0] === 'METHOD'))
: null;
result.parameters = node
.filter((child) => Array.isArray(child) && child[0] === 'PARAMETER')
.map((param) => this.convert(param));
break;
case 'METHOD':
result.type = 'Method';
result.name = node[1];
result.id = this.getId(node);
break;
case 'PARAMETER':
result.type = 'Parameter';
result.name = node[1];
result.value = parseFloat(node[2]);
result.unit = this.convertUnit(
node.find(
(child) =>
Array.isArray(child) &&
(child[0] === 'LENGTHUNIT' || child[0] === 'ANGLEUNIT' || child[0] === 'SCALEUNIT')
)
);
result.id = this.getId(node);
break;
case 'BOUNDCRS':
result.type = 'BoundCRS';
// Process SOURCECRS
const sourceCrsNode = node.find((child) => Array.isArray(child) && child[0] === 'SOURCECRS');
if (sourceCrsNode) {
const sourceCrsContent = sourceCrsNode.find((child) => Array.isArray(child));
result.source_crs = sourceCrsContent ? this.convert(sourceCrsContent) : null;
}
// Process TARGETCRS
const targetCrsNode = node.find((child) => Array.isArray(child) && child[0] === 'TARGETCRS');
if (targetCrsNode) {
const targetCrsContent = targetCrsNode.find((child) => Array.isArray(child));
result.target_crs = targetCrsContent ? this.convert(targetCrsContent) : null;
}
// Process ABRIDGEDTRANSFORMATION
const transformationNode = node.find((child) => Array.isArray(child) && child[0] === 'ABRIDGEDTRANSFORMATION');
if (transformationNode) {
result.transformation = this.convert(transformationNode);
} else {
result.transformation = null;
}
break;
case 'ABRIDGEDTRANSFORMATION':
result.type = 'Transformation';
result.name = node[1];
result.method = node.find((child) => Array.isArray(child) && child[0] === 'METHOD')
? this.convert(node.find((child) => Array.isArray(child) && child[0] === 'METHOD'))
: null;
result.parameters = node
.filter((child) => Array.isArray(child) && (child[0] === 'PARAMETER' || child[0] === 'PARAMETERFILE'))
.map((param) => {
if (param[0] === 'PARAMETER') {
return this.convert(param);
} else if (param[0] === 'PARAMETERFILE') {
return {
name: param[1],
value: param[2],
id: {
'authority': 'EPSG',
'code': 8656
}
};
}
});
// Adjust the Scale difference parameter if present
if (result.parameters.length === 7) {
const scaleDifference = result.parameters[6];
if (scaleDifference.name === 'Scale difference') {
scaleDifference.value = Math.round((scaleDifference.value - 1) * 1e12) / 1e6;
}
}
result.id = this.getId(node);
break;
case 'AXIS':
if (!result.coordinate_system) {
result.coordinate_system = { type: 'unspecified', axis: [] };
}
result.coordinate_system.axis.push(this.convertAxis(node));
break;
case 'LENGTHUNIT':
const unit = this.convertUnit(node, 'LinearUnit');
if (result.coordinate_system && result.coordinate_system.axis) {
result.coordinate_system.axis.forEach((axis) => {
if (!axis.unit) {
axis.unit = unit;
}
});
}
if (unit.conversion_factor && unit.conversion_factor !== 1) {
if (result.semi_major_axis) {
result.semi_major_axis = {
value: result.semi_major_axis,
unit,
};
}
}
break;
default:
result.keyword = node[0];
break;
}
return result;
}
}
class PROJJSONBuilder2015 extends PROJJSONBuilderBase {
static convert(node, result = {}) {
super.convert(node, result);
// Skip `CS` and `USAGE` nodes for WKT2-2015
if (result.coordinate_system && result.coordinate_system.subtype === 'Cartesian') {
delete result.coordinate_system;
}
if (result.usage) {
delete result.usage;
}
return result;
}
}
class PROJJSONBuilder2019 extends PROJJSONBuilderBase {
static convert(node, result = {}) {
super.convert(node, result);
// Handle `CS` node for WKT2-2019
const csNode = node.find((child) => Array.isArray(child) && child[0] === 'CS');
if (csNode) {
result.coordinate_system = {
subtype: csNode[1],
axis: this.extractAxes(node),
};
}
// Handle `USAGE` node for WKT2-2019
const usageNode = node.find((child) => Array.isArray(child) && child[0] === 'USAGE');
if (usageNode) {
const scope = usageNode.find((child) => Array.isArray(child) && child[0] === 'SCOPE');
const area = usageNode.find((child) => Array.isArray(child) && child[0] === 'AREA');
const bbox = usageNode.find((child) => Array.isArray(child) && child[0] === 'BBOX');
result.usage = {};
if (scope) {
result.usage.scope = scope[1];
}
if (area) {
result.usage.area = area[1];
}
if (bbox) {
result.usage.bbox = bbox.slice(1);
}
}
return result;
}
}
/**
* Detects the WKT2 version based on the structure of the WKT.
* @param {Array} root The root WKT array node.
* @returns {string} The detected version ("2015" or "2019").
*/
function detectWKT2Version(root) {
// Check for WKT2-2019-specific nodes
if (root.find((child) => Array.isArray(child) && child[0] === 'USAGE')) {
return '2019'; // `USAGE` is specific to WKT2-2019
}
// Check for WKT2-2015-specific nodes
if (root.find((child) => Array.isArray(child) && child[0] === 'CS')) {
return '2015'; // `CS` is valid in both, but default to 2015 unless `USAGE` is present
}
if (root[0] === 'BOUNDCRS' || root[0] === 'PROJCRS' || root[0] === 'GEOGCRS') {
return '2015'; // These are valid in both, but default to 2015
}
// Default to WKT2-2015 if no specific indicators are found
return '2015';
}
/**
* Builds a PROJJSON object from a WKT array structure.
* @param {Array} root The root WKT array node.
* @returns {Object} The PROJJSON object.
*/
function buildPROJJSON(root) {
const version = detectWKT2Version(root);
const builder = version === '2019' ? PROJJSONBuilder2019 : PROJJSONBuilder2015;
return builder.convert(root);
}
/**
* Detects whether the WKT string is WKT1 or WKT2.
* @param {string} wkt The WKT string.
* @returns {string} The detected version ("WKT1" or "WKT2").
*/
function detectWKTVersion(wkt) {
// Normalize the WKT string for easier keyword matching
const normalizedWKT = wkt.toUpperCase();
// Check for WKT2-specific keywords
if (
normalizedWKT.includes('PROJCRS') ||
normalizedWKT.includes('GEOGCRS') ||
normalizedWKT.includes('BOUNDCRS') ||
normalizedWKT.includes('VERTCRS') ||
normalizedWKT.includes('LENGTHUNIT') ||
normalizedWKT.includes('ANGLEUNIT') ||
normalizedWKT.includes('SCALEUNIT')
) {
return 'WKT2';
}
// Check for WKT1-specific keywords
if (
normalizedWKT.includes('PROJCS') ||
normalizedWKT.includes('GEOGCS') ||
normalizedWKT.includes('LOCAL_CS') ||
normalizedWKT.includes('VERT_CS') ||
normalizedWKT.includes('UNIT')
) {
return 'WKT1';
}
// Default to WKT1 if no specific indicators are found
return 'WKT1';
}
var NEUTRAL = 1;
var KEYWORD = 2;
var NUMBER = 3;
var QUOTED = 4;
var AFTERQUOTE = 5;
var ENDED = -1;
var whitespace = /\s/;
var latin = /[A-Za-z]/;
var keyword = /[A-Za-z84_]/;
var endThings = /[,\]]/;
var digets = /[\d\.E\-\+]/;
// const ignoredChar = /[\s_\-\/\(\)]/g;
function Parser(text) {
if (typeof text !== 'string') {
throw new Error('not a string');
}
this.text = text.trim();
this.level = 0;
this.place = 0;
this.root = null;
this.stack = [];
this.currentObject = null;
this.state = NEUTRAL;
}
Parser.prototype.readCharicter = function() {
var char = this.text[this.place++];
if (this.state !== QUOTED) {
while (whitespace.test(char)) {
if (this.place >= this.text.length) {
return;
}
char = this.text[this.place++];
}
}
switch (this.state) {
case NEUTRAL:
return this.neutral(char);
case KEYWORD:
return this.keyword(char)
case QUOTED:
return this.quoted(char);
case AFTERQUOTE:
return this.afterquote(char);
case NUMBER:
return this.number(char);
case ENDED:
return;
}
};
Parser.prototype.afterquote = function(char) {
if (char === '"') {
this.word += '"';
this.state = QUOTED;
return;
}
if (endThings.test(char)) {
this.word = this.word.trim();
this.afterItem(char);
return;
}
throw new Error('havn\'t handled "' +char + '" in afterquote yet, index ' + this.place);
};
Parser.prototype.afterItem = function(char) {
if (char === ',') {
if (this.word !== null) {
this.currentObject.push(this.word);
}
this.word = null;
this.state = NEUTRAL;
return;
}
if (char === ']') {
this.level--;
if (this.word !== null) {
this.currentObject.push(this.word);
this.word = null;
}
this.state = NEUTRAL;
this.currentObject = this.stack.pop();
if (!this.currentObject) {
this.state = ENDED;
}
return;
}
};
Parser.prototype.number = function(char) {
if (digets.test(char)) {
this.word += char;
return;
}
if (endThings.test(char)) {
this.word = parseFloat(this.word);
this.afterItem(char);
return;
}
throw new Error('havn\'t handled "' +char + '" in number yet, index ' + this.place);
};
Parser.prototype.quoted = function(char) {
if (char === '"') {
this.state = AFTERQUOTE;
return;
}
this.word += char;
return;
};
Parser.prototype.keyword = function(char) {
if (keyword.test(char)) {
this.word += char;
return;
}
if (char === '[') {
var newObjects = [];
newObjects.push(this.word);
this.level++;
if (this.root === null) {
this.root = newObjects;
} else {
this.currentObject.push(newObjects);
}
this.stack.push(this.currentObject);
this.currentObject = newObjects;
this.state = NEUTRAL;
return;
}
if (endThings.test(char)) {
this.afterItem(char);
return;
}
throw new Error('havn\'t handled "' +char + '" in keyword yet, index ' + this.place);
};
Parser.prototype.neutral = function(char) {
if (latin.test(char)) {
this.word = char;
this.state = KEYWORD;
return;
}
if (char === '"') {
this.word = '';
this.state = QUOTED;
return;
}
if (digets.test(char)) {
this.word = char;
this.state = NUMBER;
return;
}
if (endThings.test(char)) {
this.afterItem(char);
return;
}
throw new Error('havn\'t handled "' +char + '" in neutral yet, index ' + this.place);
};
Parser.prototype.output = function() {
while (this.place < this.text.length) {
this.readCharicter();
}
if (this.state === ENDED) {
return this.root;
}
throw new Error('unable to parse string "' +this.text + '". State is ' + this.state);
};
function parseString(txt) {
var parser = new Parser(txt);
return parser.output();
}
function mapit(obj, key, value) {
if (Array.isArray(key)) {
value.unshift(key);
key = null;
}
var thing = key ? {} : obj;
var out = value.reduce(function(newObj, item) {
sExpr(item, newObj);
return newObj
}, thing);
if (key) {
obj[key] = out;
}
}
function sExpr(v, obj) {
if (!Array.isArray(v)) {
obj[v] = true;
return;
}
var key = v.shift();
if (key === 'PARAMETER') {
key = v.shift();
}
if (v.length === 1) {
if (Array.isArray(v[0])) {
obj[key] = {};
sExpr(v[0], obj[key]);
return;
}
obj[key] = v[0];
return;
}
if (!v.length) {
obj[key] = true;
return;
}
if (key === 'TOWGS84') {
obj[key] = v;
return;
}
if (key === 'AXIS') {
if (!(key in obj)) {
obj[key] = [];
}
obj[key].push(v);
return;
}
if (!Array.isArray(key)) {
obj[key] = {};
}
var i;
switch (key) {
case 'UNIT':
case 'PRIMEM':
case 'VERT_DATUM':
obj[key] = {
name: v[0].toLowerCase(),
convert: v[1]
};
if (v.length === 3) {
sExpr(v[2], obj[key]);
}
return;
case 'SPHEROID':
case 'ELLIPSOID':
obj[key] = {
name: v[0],
a: v[1],
rf: v[2]
};
if (v.length === 4) {
sExpr(v[3], obj[key]);
}
return;
case 'EDATUM':
case 'ENGINEERINGDATUM':
case 'LOCAL_DATUM':
case 'DATUM':
case 'VERT_CS':
case 'VERTCRS':
case 'VERTICALCRS':
v[0] = ['name', v[0]];
mapit(obj, key, v);
return;
case 'COMPD_CS':
case 'COMPOUNDCRS':
case 'FITTED_CS':
// the followings are the crs defined in
// https://github.com/proj4js/proj4js/blob/1da4ed0b865d0fcb51c136090569210cdcc9019e/lib/parseCode.js#L11
case 'PROJECTEDCRS':
case 'PROJCRS':
case 'GEOGCS':
case 'GEOCCS':
case 'PROJCS':
case 'LOCAL_CS':
case 'GEODCRS':
case 'GEODETICCRS':
case 'GEODETICDATUM':
case 'ENGCRS':
case 'ENGINEERINGCRS':
v[0] = ['name', v[0]];
mapit(obj, key, v);
obj[key].type = key;
return;
default:
i = -1;
while (++i < v.length) {
if (!Array.isArray(v[i])) {
return sExpr(v, obj[key]);
}
}
return mapit(obj, key, v);
}
}
var D2R = 0.01745329251994329577;
function d2r(input) {
return input * D2R;
}
function applyProjectionDefaults(wkt) {
// Normalize projName for WKT2 compatibility
const normalizedProjName = (wkt.projName || '').toLowerCase().replace(/_/g, ' ');
if (!wkt.long0 && wkt.longc && (normalizedProjName === 'albers conic equal area' || normalizedProjName === 'lambert azimuthal equal area')) {
wkt.long0 = wkt.longc;
}
if (!wkt.lat_ts && wkt.lat1 && (normalizedProjName === 'stereographic south pole' || normalizedProjName === 'polar stereographic (variant b)')) {
wkt.lat0 = d2r(wkt.lat1 > 0 ? 90 : -90);
wkt.lat_ts = wkt.lat1;
delete wkt.lat1;
} else if (!wkt.lat_ts && wkt.lat0 && (normalizedProjName === 'polar stereographic' || normalizedProjName === 'polar stereographic (variant a)')) {
wkt.lat_ts = wkt.lat0;
wkt.lat0 = d2r(wkt.lat0 > 0 ? 90 : -90);
delete wkt.lat1;
}
}
// Helper function to process units and to_meter
function processUnit(unit) {
let result = { units: null, to_meter: undefined };
if (typeof unit === 'string') {
result.units = unit.toLowerCase();
if (result.units === 'metre') {
result.units = 'meter'; // Normalize 'metre' to 'meter'
}
if (result.units === 'meter') {
result.to_meter = 1; // Only set to_meter if units are 'meter'
}
} else if (unit && unit.name) {
result.units = unit.name.toLowerCase();
if (result.units === 'metre') {
result.units = 'meter'; // Normalize 'metre' to 'meter'
}
result.to_meter = unit.conversion_factor;
}
return result;
}
function toValue(valueOrObject) {
if (typeof valueOrObject === 'object') {
return valueOrObject.value * valueOrObject.unit.conversion_factor;
}
return valueOrObject;
}
function calculateEllipsoid(value, result) {
if (value.ellipsoid.radius) {
result.a = value.ellipsoid.radius;
result.rf = 0;
} else {
result.a = toValue(value.ellipsoid.semi_major_axis);
if (value.ellipsoid.inverse_flattening !== undefined) {
result.rf = value.ellipsoid.inverse_flattening;
} else if (value.ellipsoid.semi_major_axis !== undefined && value.ellipsoid.semi_minor_axis !== undefined) {
result.rf = result.a / (result.a - toValue(value.ellipsoid.semi_minor_axis));
}
}
}
function transformPROJJSON(projjson, result = {}) {
if (!projjson || typeof projjson !== 'object') {
return projjson; // Return primitive values as-is
}
if (projjson.type === 'BoundCRS') {
transformPROJJSON(projjson.source_crs, result);
if (projjson.transformation) {
if (projjson.transformation.method && projjson.transformation.method.name === 'NTv2') {
// Set nadgrids to the filename from the parameterfile
result.nadgrids = projjson.transformation.parameters[0].value;
} else {
// Populate datum_params if no parameterfile is found
result.datum_params = projjson.transformation.parameters.map((param) => param.value);
}
}
return result; // Return early for BoundCRS
}
// Handle specific keys in PROJJSON
Object.keys(projjson).forEach((key) => {
const value = projjson[key];
if (value === null) {
return;
}
switch (key) {
case 'name':
if (result.srsCode) {
break;
}
result.name = value;
result.srsCode = value; // Map `name` to `srsCode`
break;
case 'type':
if (value === 'GeographicCRS') {
result.projName = 'longlat';
} else if (value === 'ProjectedCRS' && projjson.conversion && projjson.conversion.method) {
result.projName = projjson.conversion.method.name; // Retain original capitalization
}
break;
case 'datum':
case 'datum_ensemble': // Handle both datum and ensemble
if (value.ellipsoid) {
// Extract ellipsoid properties
result.ellps = value.ellipsoid.name;
calculateEllipsoid(value, result);
}
if (value.prime_meridian) {
result.from_greenwich = value.prime_meridian.longitude * Math.PI / 180; // Convert to radians
}
break;
case 'ellipsoid':
result.ellps = value.name;
calculateEllipsoid(value, result);
break;
case 'prime_meridian':
result.long0 = (value.longitude || 0) * Math.PI / 180; // Convert to radians
break;
case 'coordinate_system':
if (value.axis) {
result.axis = value.axis
.map((axis) => {
const direction = axis.direction;
if (direction === 'east') return 'e';
if (direction === 'north') return 'n';
if (direction === 'west') return 'w';
if (direction === 'south') return 's';
throw new Error(`Unknown axis direction: ${direction}`);
})
.join('') + 'u'; // Combine into a single string (e.g., "enu")
if (value.unit) {
const { units, to_meter } = processUnit(value.unit);
result.units = units;
result.to_meter = to_meter;
} else if (value.axis[0] && value.axis[0].unit) {
const { units, to_meter } = processUnit(value.axis[0].unit);
result.units = units;
result.to_meter = to_meter;
}
}
break;
case 'id':
if (value.authority && value.code) {
result.title = value.authority + ':' + value.code;
}
break;
case 'conversion':
if (value.method && value.method.name) {
result.projName = value.method.name; // Retain original capitalization
}
if (value.parameters) {
value.parameters.forEach((param) => {
const paramName = param.name.toLowerCase().replace(/\s+/g, '_');
const paramValue = param.value;
if (param.unit && param.unit.conversion_factor) {
result[paramName] = paramValue * param.unit.conversion_factor; // Convert to radians or meters
} else if (param.unit === 'degree') {
result[paramName] = paramValue * Math.PI / 180; // Convert to radians
} else {
result[paramName] = paramValue;
}
});
}
break;
case 'unit':
if (value.name) {
result.units = value.name.toLowerCase();
if (result.units === 'metre') {
result.units = 'meter';
}
}
if (value.conversion_factor) {
result.to_meter = value.conversion_factor;
}
break;
case 'base_crs':
transformPROJJSON(value, result); // Pass `result` directly
result.datumCode = value.id ? value.id.authority + '_' + value.id.code : value.name; // Set datumCode
break;
}
});
// Additional calculated properties
if (result.latitude_of_false_origin !== undefined) {
result.lat0 = result.latitude_of_false_origin; // Already in radians
}
if (result.longitude_of_false_origin !== undefined) {
result.long0 = result.longitude_of_false_origin;
}
if (result.latitude_of_standard_parallel !== undefined) {
result.lat0 = result.latitude_of_standard_parallel;
result.lat1 = result.latitude_of_standard_parallel;
}
if (result.latitude_of_1st_standard_parallel !== undefined) {
result.lat1 = result.latitude_of_1st_standard_parallel;
}
if (result.latitude_of_2nd_standard_parallel !== undefined) {
result.lat2 = result.latitude_of_2nd_standard_parallel;
}
if (result.latitude_of_projection_centre !== undefined) {
result.lat0 = result.latitude_of_projection_centre;
}
if (result.longitude_of_projection_centre !== undefined) {
result.longc = result.longitude_of_projection_centre;
}
if (result.easting_at_false_origin !== undefined) {
result.x0 = result.easting_at_false_origin;
}
if (result.northing_at_false_origin !== undefined) {
result.y0 = result.northing_at_false_origin;
}
if (result.latitude_of_natural_origin !== undefined) {
result.lat0 = result.latitude_of_natural_origin;
}
if (result.longitude_of_natural_origin !== undefined) {
result.long0 = result.longitude_of_natural_origin;
}
if (result.longitude_of_origin !== undefined) {
result.long0 = result.longitude_of_origin;
}
if (result.false_easting !== undefined) {
result.x0 = result.false_easting;
}
if (result.easting_at_projection_centre) {
result.x0 = result.easting_at_projection_centre;
}
if (result.false_northing !== undefined) {
result.y0 = result.false_northing;
}
if (result.northing_at_projection_centre) {
result.y0 = result.northing_at_projection_centre;
}
if (result.standard_parallel_1 !== undefined) {
result.lat1 = result.standard_parallel_1;
}
if (result.standard_parallel_2 !== undefined) {
result.lat2 = result.standard_parallel_2;
}
if (result.scale_factor_at_natural_origin !== undefined) {
result.k0 = result.scale_factor_at_natural_origin;
}
if (result.scale_factor_at_projection_centre !== undefined) {
result.k0 = result.scale_factor_at_projection_centre;
}
if (result.scale_factor_on_pseudo_standard_parallel !== undefined) {
result.k0 = result.scale_factor_on_pseudo_standard_parallel;
}
if (result.azimuth !== undefined) {
result.alpha = result.azimuth;
}
if (result.azimuth_at_projection_centre !== undefined) {
result.alpha = result.azimuth_at_projection_centre;
}
if (result.angle_from_rectified_to_skew_grid) {
result.rectified_grid_angle = result.angle_from_rectified_to_skew_grid;
}
// Apply projection defaults
applyProjectionDefaults(result);
return result;
}
var knownTypes = ['PROJECTEDCRS', 'PROJCRS', 'GEOGCS', 'GEOCCS', 'PROJCS', 'LOCAL_CS', 'GEODCRS',
'GEODETICCRS', 'GEODETICDATUM', 'ENGCRS', 'ENGINEERINGCRS'];
function rename(obj, params) {
var outName = params[0];
var inName = params[1];
if (!(outName in obj) && (inName in obj)) {
obj[outName] = obj[inName];
if (params.length === 3) {
obj[outName] = params[2](obj[outName]);
}
}
}
function cleanWKT(wkt) {
var keys = Object.keys(wkt);
for (var i = 0, ii = keys.length; i <ii; ++i) {
var key = keys[i];
// the followings are the crs defined in
// https://github.com/proj4js/proj4js/blob/1da4ed0b865d0fcb51c136090569210cdcc9019e/lib/parseCode.js#L11
if (knownTypes.indexOf(key) !== -1) {
setPropertiesFromWkt(wkt[key]);
}
if (typeof wkt[key] === 'object') {
cleanWKT(wkt[key]);
}
}
}
function setPropertiesFromWkt(wkt) {
if (wkt.AUTHORITY) {
var authority = Object.keys(wkt.AUTHORITY)[0];
if (authority && authority in wkt.AUTHORITY) {
wkt.title = authority + ':' + wkt.AUTHORITY[authority];
}
}
if (wkt.type === 'GEOGCS') {
wkt.projName = 'longlat';
} else if (wkt.type === 'LOCAL_CS') {
wkt.projName = 'identity';
wkt.local = true;
} else {
if (typeof wkt.PROJECTION === 'object') {
wkt.projName = Object.keys(wkt.PROJECTION)[0];
} else {
wkt.projName = wkt.PROJECTION;
}
}
if (wkt.AXIS) {
var axisOrder = '';
for (var i = 0, ii = wkt.AXIS.length; i < ii; ++i) {
var axis = [wkt.AXIS[i][0].toLowerCase(), wkt.AXIS[i][1].toLowerCase()];
if (axis[0].indexOf('north') !== -1 || ((axis[0] === 'y' || axis[0] === 'lat') && axis[1] === 'north')) {
axisOrder += 'n';
} else if (axis[0].indexOf('south') !== -1 || ((axis[0] === 'y' || axis[0] === 'lat') && axis[1] === 'south')) {
axisOrder += 's';
} else if (axis[0].indexOf('east') !== -1 || ((axis[0] === 'x' || axis[0] === 'lon') && axis[1] === 'east')) {
axisOrder += 'e';
} else if (axis[0].indexOf('west') !== -1 || ((axis[0] === 'x' || axis[0] === 'lon') && axis[1] === 'west')) {
axisOrder += 'w';
}
}
if (axisOrder.length === 2) {
axisOrder += 'u';
}
if (axisOrder.length === 3) {
wkt.axis = axisOrder;
}
}
if (wkt.UNIT) {
wkt.units = wkt.UNIT.name.toLowerCase();
if (wkt.units === 'metre') {
wkt.units = 'meter';
}
if (wkt.UNIT.convert) {
if (wkt.type === 'GEOGCS') {
if (wkt.DATUM && wkt.DATUM.SPHEROID) {
wkt.to_meter = wkt.UNIT.convert*wkt.DATUM.SPHEROID.a;
}
} else {
wkt.to_meter = wkt.UNIT.convert;
}
}
}
var geogcs = wkt.GEOGCS;
if (wkt.type === 'GEOGCS') {
geogcs = wkt;
}
if (geogcs) {
//if(wkt.GEOGCS.PRIMEM&&wkt.GEOGCS.PRIMEM.convert){
// wkt.from_greenwich=wkt.GEOGCS.PRIMEM.convert*D2R;
//}
if (geogcs.DATUM) {
wkt.datumCode = geogcs.DATUM.name.toLowerCase();
} else {
wkt.datumCode = geogcs.name.toLowerCase();
}
if (wkt.datumCode.slice(0, 2) === 'd_') {
wkt.datumCode = wkt.datumCode.slice(2);
}
if (wkt.datumCode === 'new_zealand_1949') {
wkt.datumCode = 'nzgd49';
}
if (wkt.datumCode === 'wgs_1984' || wkt.datumCode === 'world_geodetic_system_1984') {
if (wkt.PROJECTION === 'Mercator_Auxiliary_Sphere') {
wkt.sphere = true;
}
wkt.datumCode = 'wgs84';
}
if (wkt.datumCode === 'belge_1972') {
wkt.datumCode = 'rnb72';
}
if (geogcs.DATUM && geogcs.DATUM.SPHEROID) {
wkt.ellps = geogcs.DATUM.SPHEROID.name.replace('_19', '').replace(/[Cc]larke\_18/, 'clrk');
if (wkt.ellps.toLowerCase().slice(0, 13) === 'international') {
wkt.ellps = 'intl';
}
wkt.a = geogcs.DATUM.SPHEROID.a;
wkt.rf = parseFloat(geogcs.DATUM.SPHEROID.rf, 10);
}
if (geogcs.DATUM && geogcs.DATUM.TOWGS84) {
wkt.datum_params = geogcs.DATUM.TOWGS84;
}
if (~wkt.datumCode.indexOf('osgb_1936')) {
wkt.datumCode = 'osgb36';
}
if (~wkt.datumCode.indexOf('osni_1952')) {
wkt.datumCode = 'osni52';
}
if (~wkt.datumCode.indexOf('tm65')
|| ~wkt.datumCode.indexOf('geodetic_datum_of_1965')) {
wkt.datumCode = 'ire65';
}
if (wkt.datumCode === 'ch1903+') {
wkt.datumCode = 'ch1903';
}
if (~wkt.datumCode.indexOf('israel')) {
wkt.datumCode = 'isr93';
}
}
if (wkt.b && !isFinite(wkt.b)) {
wkt.b = wkt.a;
}
if (wkt.rectified_grid_angle) {
wkt.rectified_grid_angle = d2r(wkt.rectified_grid_angle);
}
function toMeter(input) {
var ratio = wkt.to_meter || 1;
return input * ratio;
}
var renamer = function(a) {
return rename(wkt, a);
};
var list = [
['standard_parallel_1', 'Standard_Parallel_1'],
['standard_parallel_1', 'Latitude of 1st standard parallel'],
['standard_parallel_2', 'Standard_Parallel_2'],
['standard_parallel_2', 'Latitude of 2nd standard parallel'],
['false_easting', 'False_Easting'],
['false_easting', 'False easting'],
['false-easting', 'Easting at false origin'],
['false_northing', 'False_Northing'],
['false_northing', 'False northing'],
['false_northing', 'Northing at false origin'],
['central_meridian', 'Central_Meridian'],
['central_meridian', 'Longitude of natural origin'],
['central_meridian', 'Longitude of false origin'],
['latitude_of_origin', 'Latitude_Of_Origin'],
['latitude_of_origin', 'Central_Parallel'],
['latitude_of_origin', 'Latitude of natural origin'],
['latitude_of_origin', 'Latitude of false origin'],
['scale_factor', 'Scale_Factor'],
['k0', 'scale_factor'],
['latitude_of_center', 'Latitude_Of_Center'],
['latitude_of_center', 'Latitude_of_center'],
['lat0', 'latitude_of_center', d2r],
['longitude_of_center', 'Longitude_Of_Center'],
['longitude_of_center', 'Longitude_of_center'],
['longc', 'longitude_of_center', d2r],
['x0', 'false_easting', toMeter],
['y0', 'false_northing', toMeter],
['long0', 'central_meridian', d2r],
['lat0', 'latitude_of_origin', d2r],
['lat0', 'standard_parallel_1', d2r],
['lat1', 'standard_parallel_1', d2r],
['lat2', 'standard_parallel_2', d2r],
['azimuth', 'Azimuth'],
['alpha', 'azimuth', d2r],
['srsCode', 'name']
];
list.forEach(renamer);
applyProjectionDefaults(wkt);
}
function wkt(wkt) {
if (typeof wkt === 'object') {
return transformPROJJSON(wkt);
}
const version = detectWKTVersion(wkt);
var lisp = parseString(wkt);
if (version === 'WKT2') {
const projjson = buildPROJJSON(lisp);
return transformPROJJSON(projjson);
}
var type = lisp[0];
var obj = {};
sExpr(lisp, obj);
cleanWKT(obj);
return obj[type];
}
function defs(name) {
/*global console*/
var that = this;
if (arguments.length === 2) {
var def = arguments[1];
if (typeof def === 'string') {
if (def.charAt(0) === '+') {
defs[name] = projStr(arguments[1]);
}
else {
defs[name] = wkt(arguments[1]);
}
} else {
defs[name] = def;
}
}
else if (arguments.length === 1) {
if (Array.isArray(name)) {
return name.map(function(v) {
if (Array.isArray(v)) {
defs.apply(that, v);
}
else {
defs(v);
}
});
}
else if (typeof name === 'string') {
if (name in defs) {
return defs[name];
}
}
else if ('EPSG' in name) {
defs['EPSG:' + name.EPSG] = name;
}
else if ('ESRI' in name) {
defs['ESRI:' + name.ESRI] = name;
}
else if ('IAU2000' in name) {
defs['IAU2000:' + name.IAU2000] = name;
}
else {
console.log(name);
}
return;
}
}
globals(defs);
function testObj(code){
return typeof code === 'string';
}
function testDef(code){
return code in defs;
}
var codeWords = ['PROJECTEDCRS', 'PROJCRS', 'GEOGCS','GEOCCS','PROJCS','LOCAL_CS', 'GEODCRS', 'GEODETICCRS', 'GEODETICDATUM', 'ENGCRS', 'ENGINEERINGCRS'];
function testWKT(code){
return codeWords.some(function (word) {
return code.indexOf(word) > -1;
});
}
var codes = ['3857', '900913', '3785', '102113'];
function checkMercator(item) {
var auth = match(item, 'authority');
if (!auth) {
return;
}
var code = match(auth, 'epsg');
return code && codes.indexOf(code) > -1;
}
function checkProjStr(item) {
var ext = match(item, 'extension');
if (!ext) {
return;
}
return match(ext, 'proj4');
}
function testProj(code){
return code[0] === '+';
}
function parse(code){
if (testObj(code)) {
//check to see if this is a WKT string
if (testDef(code)) {
return defs[code];
}
if (testWKT(code)) {
var out = wkt(code);
// test of spetial case, due to this being a very common and often malformed
if (checkMercator(out)) {
return defs['EPSG:3857'];
}
var maybeProjStr = checkProjStr(out);
if (maybeProjStr) {
return projStr(maybeProjStr);
}
return out;
}
if (testProj(code)) {
return projStr(code);
}
}else {
return code;
}
}
function extend(destination, source) {
destination = destination || {};
var value, property;
if (!source) {
return destination;
}
for (property in source) {
value = source[property];
if (value !== undefined) {
destination[property] = value;
}
}
return destination;
}
function msfnz(eccent, sinphi, cosphi) {
var con = eccent * sinphi;
return cosphi / (Math.sqrt(1 - con * con));
}
function sign(x) {
return x<0 ? -1 : 1;
}
function adjust_lon(x) {
return (Math.abs(x) <= SPI) ? x : (x - (sign(x) * TWO_PI));
}
function tsfnz(eccent, phi, sinphi) {
var con = eccent * sinphi;
var com = 0.5 * eccent;
con = Math.pow(((1 - con) / (1 + con)), com);
return (Math.tan(0.5 * (HALF_PI - phi)) / con);
}
function phi2z(eccent, ts) {
var eccnth = 0.5 * eccent;
var con, dphi;
var phi = HALF_PI - 2 * Math.atan(ts);
for (var i = 0; i <= 15; i++) {
con = eccent * Math.sin(phi);
dphi = HALF_PI - 2 * Math.atan(ts * (Math.pow(((1 - con) / (1 + con)), eccnth))) - phi;
phi += dphi;
if (Math.abs(dphi) <= 0.0000000001) {
return phi;
}
}
//console.log("phi2z has NoConvergence");
return -9999;
}
function init$x() {
var con = this.b / this.a;
this.es = 1 - con * con;
if(!('x0' in this)){
this.x0 = 0;
}
if(!('y0' in this)){
this.y0 = 0;
}
this.e = Math.sqrt(this.es);
if (this.lat_ts) {
if (this.sphere) {
this.k0 = Math.cos(this.lat_ts);
}
else {
this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
}
}
else {
if (!this.k0) {
if (this.k) {
this.k0 = this.k;
}
else {
this.k0 = 1;
}
}
}
}
/* Mercator forward equations--mapping lat,long to x,y
--------------------------------------------------*/
function forward$v(p) {
var lon = p.x;
var lat = p.y;
// convert to radians
if (lat * R2D > 90 && lat * R2D < -90 && lon * R2D > 180 && lon * R2D < -180) {
return null;
}
var x, y;
if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
return null;
}
else {
if (this.sphere) {
x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
y = this.y0 + this.a * this.k0 * Math.log(Math.tan(FORTPI + 0.5 * lat));
}
else {
var sinphi = Math.sin(lat);
var ts = tsfnz(this.e, lat, sinphi);
x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
y = this.y0 - this.a * this.k0 * Math.log(ts);
}
p.x = x;
p.y = y;
return p;
}
}
/* Mercator inverse equations--mapping x,y to lat/long
--------------------------------------------------*/
function inverse$v(p) {
var x = p.x - this.x0;
var y = p.y - this.y0;
var lon, lat;
if (this.sphere) {
lat = HALF_PI - 2 * Math.atan(Math.exp(-y / (this.a * this.k0)));
}
else {
var ts = Math.exp(-y / (this.a * this.k0));
lat = phi2z(this.e, ts);
if (lat === -9999) {
return null;
}
}
lon = adjust_lon(this.long0 + x / (this.a * this.k0));
p.x = lon;
p.y = lat;
return p;
}
var names$x = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "merc"];
var merc = {
init: init$x,
forward: forward$v,
inverse: inverse$v,
names: names$x
};
function init$w() {
//no-op for longlat
}
function identity(pt) {
return pt;
}
var names$w = ["longlat", "identity"];
var longlat = {
init: init$w,
forward: identity,
inverse: identity,
names: names$w
};
var projs = [merc, longlat];
var names$v = {};
var projStore = [];
function add(proj, i) {
var len = projStore.length;
if (!proj.names) {
console.log(i);
return true;
}
projStore[len] = proj;
proj.names.forEach(function(n) {
names$v[n.toLowerCase()] = len;
});
return this;
}
function get(name) {
if (!name) {
return false;
}
var n = name.toLowerCase();
if (typeof names$v[n] !== 'undefined' && projStore[names$v[n]]) {
return projStore[names$v[n]];
}
}
function start() {
projs.forEach(add);
}
var projections = {
start: start,
add: add,
get: get
};
var exports$1 = {};
exports$1.MERIT = {
a: 6378137.0,
rf: 298.257,
ellipseName: "MERIT 1983"
};
exports$1.SGS85 = {
a: 6378136.0,
rf: 298.257,
ellipseName: "Soviet Geodetic System 85"
};
exports$1.GRS80 = {
a: 6378137.0,
rf: 298.257222101,
ellipseName: "GRS 1980(IUGG, 1980)"
};
exports$1.IAU76 = {
a: 6378140.0,
rf: 298.257,
ellipseName: "IAU 1976"
};
exports$1.airy = {
a: 6377563.396,
b: 6356256.910,
ellipseName: "Airy 1830"
};
exports$1.APL4 = {
a: 6378137,
rf: 298.25,
ellipseName: "Appl. Physics. 1965"
};
exports$1.NWL9D = {
a: 6378145.0,
rf: 298.25,
ellipseName: "Naval Weapons Lab., 1965"
};
exports$1.mod_airy = {
a: 6377340.189,
b: 6356034.446,
ellipseName: "Modified Airy"
};
exports$1.andrae = {
a: 6377104.43,
rf: 300.0,
ellipseName: "Andrae 1876 (Den., Iclnd.)"
};
exports$1.aust_SA = {
a: 6378160.0,
rf: 298.25,
ellipseName: "Australian Natl & S. Amer. 1969"
};
exports$1.GRS67 = {
a: 6378160.0,
rf: 298.2471674270,
ellipseName: "GRS 67(IUGG 1967)"
};
exports$1.bessel = {
a: 6377397.155,
rf: 299.1528128,
ellipseName: "Bessel 1841"
};
exports$1.bess_nam = {
a: 6377483.865,
rf: 299.1528128,
ellipseName: "Bessel 1841 (Namibia)"
};
exports$1.clrk66 = {
a: 6378206.4,
b: 6356583.8,
ellipseName: "Clarke 1866"
};
exports$1.clrk80 = {
a: 6378249.145,
rf: 293.4663,
ellipseName: "Clarke 1880 mod."
};
exports$1.clrk80ign = {
a: 6378249.2,
b: 6356515,
rf: 293.4660213,
ellipseName: "Clarke 1880 (IGN)"
};
exports$1.clrk58 = {
a: 6378293.645208759,
rf: 294.2606763692654,
ellipseName: "Clarke 1858"
};
exports$1.CPM = {
a: 6375738.7,
rf: 334.29,
ellipseName: "Comm. des Poids et Mesures 1799"
};
exports$1.delmbr = {
a: 6376428.0,
rf: 311.5,
ellipseName: "Delambre 1810 (Belgium)"
};
exports$1.engelis = {
a: 6378136.05,
rf: 298.2566,
ellipseName: "Engelis 1985"
};
exports$1.evrst30 = {
a: 6377276.345,
rf: 300.8017,
ellipseName: "Everest 1830"
};
exports$1.evrst48 = {
a: 6377304.063,
rf: 300.8017,
ellipseName: "Everest 1948"
};
exports$1.evrst56 = {
a: 6377301.243,
rf: 300.8017,
ellipseName: "Everest 1956"
};
exports$1.evrst69 = {
a: 6377295.664,
rf: 300.8017,
ellipseName: "Everest 1969"
};
exports$1.evrstSS = {
a: 6377298.556,
rf: 300.8017,
ellipseName: "Everest (Sabah & Sarawak)"
};
exports$1.fschr60 = {
a: 6378166.0,
rf: 298.3,
ellipseName: "Fischer (Mercury Datum) 1960"
};
exports$1.fschr60m = {
a: 6378155.0,
rf: 298.3,
ellipseName: "Fischer 1960"
};
exports$1.fschr68 = {
a: 6378150.0,
rf: 298.3,
ellipseName: "Fischer 1968"
};
exports$1.helmert = {
a: 6378200.0,
rf: 298.3,
ellipseName: "Helmert 1906"
};
exports$1.hough = {
a: 6378270.0,
rf: 297.0,
ellipseName: "Hough"
};
exports$1.intl = {
a: 6378388.0,
rf: 297.0,
ellipseName: "International 1909 (Hayford)"
};
exports$1.kaula = {
a: 6378163.0,
rf: 298.24,
ellipseName: "Kaula 1961"
};
exports$1.lerch = {
a: 6378139.0,
rf: 298.257,
ellipseName: "Lerch 1979"
};
exports$1.mprts = {
a: 6397300.0,
rf: 191.0,
ellipseName: "Maupertius 1738"
};
exports$1.new_intl = {
a: 6378157.5,
b: 6356772.2,
ellipseName: "New International 1967"
};
exports$1.plessis = {
a: 6376523.0,
rf: 6355863.0,
ellipseName: "Plessis 1817 (France)"
};
exports$1.krass = {
a: 6378245.0,
rf: 298.3,
ellipseName: "Krassovsky, 1942"
};
exports$1.SEasia = {
a: 6378155.0,
b: 6356773.3205,
ellipseName: "Southeast Asia"
};
exports$1.walbeck = {
a: 6376896.0,
b: 6355834.8467,
ellipseName: "Walbeck"
};
exports$1.WGS60 = {
a: 6378165.0,
rf: 298.3,
ellipseName: "WGS 60"
};
exports$1.WGS66 = {
a: 6378145.0,
rf: 298.25,
ellipseName: "WGS 66"
};
exports$1.WGS7 = {
a: 6378135.0,
rf: 298.26,
ellipseName: "WGS 72"
};
var WGS84 = exports$1.WGS84 = {
a: 6378137.0,
rf: 298.257223563,
ellipseName: "WGS 84"
};
exports$1.sphere = {
a: 6370997.0,
b: 6370997.0,
ellipseName: "Normal Sphere (r=6370997)"
};
function eccentricity(a, b, rf, R_A) {
var a2 = a * a; // used in geocentric
var b2 = b * b; // used in geocentric
var es = (a2 - b2) / a2; // e ^ 2
var e = 0;
if (R_A) {
a *= 1 - es * (SIXTH + es * (RA4 + es * RA6));
a2 = a * a;
es = 0;
} else {
e = Math.sqrt(es); // eccentricity
}
var ep2 = (a2 - b2) / b2; // used in geocentric
return {
es: es,
e: e,
ep2: ep2
};
}
function sphere(a, b, rf, ellps, sphere) {
if (!a) { // do we have an ellipsoid?
var ellipse = match(exports$1, ellps);
if (!ellipse) {
ellipse = WGS84;
}
a = ellipse.a;
b = ellipse.b;
rf = ellipse.rf;
}
if (rf && !b) {
b = (1.0 - 1.0 / rf) * a;
}
if (rf === 0 || Math.abs(a - b) < EPSLN) {
sphere = true;
b = a;
}
return {
a: a,
b: b,
rf: rf,
sphere: sphere
};
}
var datums = {
wgs84: {
towgs84: "0,0,0",
ellipse: "WGS84",
datumName: "WGS84"
},
ch1903: {
towgs84: "674.374,15.056,405.346",
ellipse: "bessel",
datumName: "swiss"
},
ggrs87: {
towgs84: "-199.87,74.79,246.62",
ellipse: "GRS80",
datumName: "Greek_Geodetic_Reference_System_1987"
},
nad83: {
towgs84: "0,0,0",
ellipse: "GRS80",
datumName: "North_American_Datum_1983"
},
nad27: {
nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat",
ellipse: "clrk66",
datumName: "North_American_Datum_1927"
},
potsdam: {
towgs84: "598.1,73.7,418.2,0.202,0.045,-2.455,6.7",
ellipse: "bessel",
datumName: "Potsdam Rauenberg 1950 DHDN"
},
carthage: {
towgs84: "-263.0,6.0,431.0",
ellipse: "clark80",
datumName: "Carthage 1934 Tunisia"
},
hermannskogel: {
towgs84: "577.326,90.129,463.919,5.137,1.474,5.297,2.4232",
ellipse: "bessel",
datumName: "Hermannskogel"
},
militargeographische_institut: {
towgs84: "577.326,90.129,463.919,5.137,1.474,5.297,2.4232",
ellipse: "bessel",
datumName: "Militar-Geographische Institut",
},
osni52: {
towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
ellipse: "airy",
datumName: "Irish National"
},
ire65: {
towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
ellipse: "mod_airy",
datumName: "Ireland 1965"
},
rassadiran: {
towgs84: "-133.63,-157.5,-158.62",
ellipse: "intl",
datumName: "Rassadiran"
},
nzgd49: {
towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993",
ellipse: "intl",
datumName: "New Zealand Geodetic Datum 1949"
},
osgb36: {
towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894",
ellipse: "airy",
datumName: "Ordnance Survey of Great Britain 1936"
},
s_jtsk: {
towgs84: "589,76,480",
ellipse: 'bessel',
datumName: 'S-JTSK (Ferro)'
},
beduaram: {
towgs84: '-106,-87,188',
ellipse: 'clrk80',
datumName: 'Beduaram'
},
gunung_segara: {
towgs84: '-403,684,41',
ellipse: 'bessel',
datumName: 'Gunung Segara Jakarta'
},
rnb72: {
towgs84: "106.869,-52.2978,103.724,-0.33657,0.456955,-1.84218,1",
ellipse: "intl",
datumName: "Reseau National Belge 1972"
}
};
for (var key in datums) {
var datum$1 = datums[key];
datums[datum$1.datumName] = datum$1;
}
function datum(datumCode, datum_params, a, b, es, ep2, nadgrids) {
var out = {};
if (datumCode === undefined || datumCode === 'none') {
out.datum_type = PJD_NODATUM;
} else {
out.datum_type = PJD_WGS84;
}
if (datum_params) {
out.datum_params = datum_params.map(parseFloat);
if (out.datum_params[0] !== 0 || out.datum_params[1] !== 0 || out.datum_params[2] !== 0) {
out.datum_type = PJD_3PARAM;
}
if (out.datum_params.length > 3) {
if (out.datum_params[3] !== 0 || out.datum_params[4] !== 0 || out.datum_params[5] !== 0 || out.datum_params[6] !== 0) {
out.datum_type = PJD_7PARAM;
out.datum_params[3] *= SEC_TO_RAD;
out.datum_params[4] *= SEC_TO_RAD;
out.datum_params[5] *= SEC_TO_RAD;
out.datum_params[6] = (out.datum_params[6] / 1000000.0) + 1.0;
}
}
}
if (nadgrids) {
out.datum_type = PJD_GRIDSHIFT;
out.grids = nadgrids;
}
out.a = a; //datum object also uses these values
out.b = b;
out.es = es;
out.ep2 = ep2;
return out;
}
/**
* Resources for details of NTv2 file formats:
* - https://web.archive.org/web/20140127204822if_/http://www.mgs.gov.on.ca:80/stdprodconsume/groups/content/@mgs/@iandit/documents/resourcelist/stel02_047447.pdf
* - http://mimaka.com/help/gs/html/004_NTV2%20Data%20Format.htm
*/
var loadedNadgrids = {};
/**
* Load a binary NTv2 file (.gsb) to a key that can be used in a proj string like +nadgrids=<key>. Pass the NTv2 file
* as an ArrayBuffer.
*/
function nadgrid(key, data) {
var view = new DataView(data);
var isLittleEndian = detectLittleEndian(view);
var header = readHeader(view, isLittleEndian);
var subgrids = readSubgrids(view, header, isLittleEndian);
var nadgrid = {header: header, subgrids: subgrids};
loadedNadgrids[key] = nadgrid;
return nadgrid;
}
/**
* Given a proj4 value for nadgrids, return an array of loaded grids
*/
function getNadgrids(nadgrids) {
// Format details: http://proj.maptools.org/gen_parms.html
if (nadgrids === undefined) { return null; }
var grids = nadgrids.split(',');
return grids.map(parseNadgridString);
}
function parseNadgridString(value) {
if (value.length === 0) {
return null;
}
var optional = value[0] === '@';
if (optional) {
value = value.slice(1);
}
if (value === 'null') {
return {name: 'null', mandatory: !optional, grid: null, isNull: true};
}
return {
name: value,
mandatory: !optional,
grid: loadedNadgrids[value] || null,
isNull: false
};
}
function secondsToRadians(seconds) {
return (seconds / 3600) * Math.PI / 180;
}
function detectLittleEndian(view) {
var nFields = view.getInt32(8, false);
if (nFields === 11) {
return false;
}
nFields = view.getInt32(8, true);
if (nFields !== 11) {
console.warn('Failed to detect nadgrid endian-ness, defaulting to little-endian');
}
return true;
}
function readHeader(view, isLittleEndian) {
return {
nFields: view.getInt32(8, isLittleEndian),
nSubgridFields: view.getInt32(24, isLittleEndian),
nSubgrids: view.getInt32(40, isLittleEndian),
shiftType: decodeString(view, 56, 56 + 8).trim(),
fromSemiMajorAxis: view.getFloat64(120, isLittleEndian),
fromSemiMinorAxis: view.getFloat64(136, isLittleEndian),
toSemiMajorAxis: view.getFloat64(152, isLittleEndian),
toSemiMinorAxis: view.getFloat64(168, isLittleEndian),
};
}
function decodeString(view, start, end) {
return String.fromCharCode.apply(null, new Uint8Array(view.buffer.slice(start, end)));
}
function readSubgrids(view, header, isLittleEndian) {
var gridOffset = 176;
var grids = [];
for (var i = 0; i < header.nSubgrids; i++) {
var subHeader = readGridHeader(view, gridOffset, isLittleEndian);
var nodes = readGridNodes(view, gridOffset, subHeader, isLittleEndian);
var lngColumnCount = Math.round(
1 + (subHeader.upperLongitude - subHeader.lowerLongitude) / subHeader.longitudeInterval);
var latColumnCount = Math.round(
1 + (subHeader.upperLatitude - subHeader.lowerLatitude) / subHeader.latitudeInterval);
// Proj4 operates on radians whereas the coordinates are in seconds in the grid
grids.push({
ll: [secondsToRadians(subHeader.lowerLongitude), secondsToRadians(subHeader.lowerLatitude)],
del: [secondsToRadians(subHeader.longitudeInterval), secondsToRadians(subHeader.latitudeInterval)],
lim: [lngColumnCount, latColumnCount],
count: subHeader.gridNodeCount,
cvs: mapNodes(nodes)
});
gridOffset += 176 + subHeader.gridNodeCount * 16;
}
return grids;
}
function mapNodes(nodes) {
return nodes.map(function (r) {return [secondsToRadians(r.longitudeShift), secondsToRadians(r.latitudeShift)];});
}
function readGridHeader(view, offset, isLittleEndian) {
return {
name: decodeString(view, offset + 8, offset + 16).trim(),
parent: decodeString(view, offset + 24, offset + 24 + 8).trim(),
lowerLatitude: view.getFloat64(offset + 72, isLittleEndian),
upperLatitude: view.getFloat64(offset + 88, isLittleEndian),
lowerLongitude: view.getFloat64(offset + 104, isLittleEndian),
upperLongitude: view.getFloat64(offset + 120, isLittleEndian),
latitudeInterval: view.getFloat64(offset + 136, isLittleEndian),
longitudeInterval: view.getFloat64(offset + 152, isLittleEndian),
gridNodeCount: view.getInt32(offset + 168, isLittleEndian)
};
}
function readGridNodes(view, offset, gridHeader, isLittleEndian) {
var nodesOffset = offset + 176;
var gridRecordLength = 16;
var gridShiftRecords = [];
for (var i = 0; i < gridHeader.gridNodeCount; i++) {
var record = {
latitudeShift: view.getFloat32(nodesOffset + i * gridRecordLength, isLittleEndian),
longitudeShift: view.getFloat32(nodesOffset + i * gridRecordLength + 4, isLittleEndian),
latitudeAccuracy: view.getFloat32(nodesOffset + i * gridRecordLength + 8, isLittleEndian),
longitudeAccuracy: view.getFloat32(nodesOffset + i * gridRecordLength + 12, isLittleEndian),
};
gridShiftRecords.push(record);
}
return gridShiftRecords;
}
function Projection(srsCode,callback) {
if (!(this instanceof Projection)) {
return new Projection(srsCode);
}
callback = callback || function(error){
if(error){
throw error;
}
};
var json = parse(srsCode);
if(typeof json !== 'object'){
callback('Could not parse to valid json: ' + srsCode);
return;
}
var ourProj = Projection.projections.get(json.projName);
if(!ourProj){
callback('Could not get projection name from: ' + srsCode);
return;
}
if (json.datumCode && json.datumCode !== 'none') {
var datumDef = match(datums, json.datumCode);
if (datumDef) {
json.datum_params = json.datum_params || (datumDef.towgs84 ? datumDef.towgs84.split(',') : null);
json.ellps = datumDef.ellipse;
json.datumName = datumDef.datumName ? datumDef.datumName : json.datumCode;
}
}
json.k0 = json.k0 || 1.0;
json.axis = json.axis || 'enu';
json.ellps = json.ellps || 'wgs84';
json.lat1 = json.lat1 || json.lat0; // Lambert_Conformal_Conic_1SP, for example, needs this
var sphere_ = sphere(json.a, json.b, json.rf, json.ellps, json.sphere);
var ecc = eccentricity(sphere_.a, sphere_.b, sphere_.rf, json.R_A);
var nadgrids = getNadgrids(json.nadgrids);
var datumObj = json.datum || datum(json.datumCode, json.datum_params, sphere_.a, sphere_.b, ecc.es, ecc.ep2,
nadgrids);
extend(this, json); // transfer everything over from the projection because we don't know what we'll need
extend(this, ourProj); // transfer all the methods from the projection
// copy the 4 things over we calculated in deriveConstants.sphere
this.a = sphere_.a;
this.b = sphere_.b;
this.rf = sphere_.rf;
this.sphere = sphere_.sphere;
// copy the 3 things we calculated in deriveConstants.eccentricity
this.es = ecc.es;
this.e = ecc.e;
this.ep2 = ecc.ep2;
// add in the datum object
this.datum = datumObj;
// init the projection
this.init();
// legecy callback from back in the day when it went to spatialreference.org
callback(null, this);
}
Projection.projections = projections;
Projection.projections.start();
function compareDatums(source, dest) {
if (source.datum_type !== dest.datum_type) {
return false; // false, datums are not equal
} else if (source.a !== dest.a || Math.abs(source.es - dest.es) > 0.000000000050) {
// the tolerance for es is to ensure that GRS80 and WGS84
// are considered identical
return false;
} else if (source.datum_type === PJD_3PARAM) {
return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2]);
} else if (source.datum_type === PJD_7PARAM) {
return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2] && source.datum_params[3] === dest.datum_params[3] && source.datum_params[4] === dest.datum_params[4] && source.datum_params[5] === dest.datum_params[5] && source.datum_params[6] === dest.datum_params[6]);
} else {
return true; // datums are equal
}
} // cs_compare_datums()
/*
* The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
* (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
* according to the current ellipsoid parameters.
*
* Latitude : Geodetic latitude in radians (input)
* Longitude : Geodetic longitude in radians (input)
* Height : Geodetic height, in meters (input)
* X : Calculated Geocentric X coordinate, in meters (output)
* Y : Calculated Geocentric Y coordinate, in meters (output)
* Z : Calculated Geocentric Z coordinate, in meters (output)
*
*/
function geodeticToGeocentric(p, es, a) {
var Longitude = p.x;
var Latitude = p.y;
var Height = p.z ? p.z : 0; //Z value not always supplied
var Rn; /* Earth radius at location */
var Sin_Lat; /* Math.sin(Latitude) */
var Sin2_Lat; /* Square of Math.sin(Latitude) */
var Cos_Lat; /* Math.cos(Latitude) */
/*
** Don't blow up if Latitude is just a little out of the value
** range as it may just be a rounding issue. Also removed longitude
** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001.
*/
if (Latitude < -HALF_PI && Latitude > -1.001 * HALF_PI) {
Latitude = -HALF_PI;
} else if (Latitude > HALF_PI && Latitude < 1.001 * HALF_PI) {
Latitude = HALF_PI;
} else if (Latitude < -HALF_PI) {
/* Latitude out of range */
//..reportError('geocent:lat out of range:' + Latitude);
return { x: -Infinity, y: -Infinity, z: p.z };
} else if (Latitude > HALF_PI) {
/* Latitude out of range */
return { x: Infinity, y: Infinity, z: p.z };
}
if (Longitude > Math.PI) {
Longitude -= (2 * Math.PI);
}
Sin_Lat = Math.sin(Latitude);
Cos_Lat = Math.cos(Latitude);
Sin2_Lat = Sin_Lat * Sin_Lat;
Rn = a / (Math.sqrt(1.0e0 - es * Sin2_Lat));
return {
x: (Rn + Height) * Cos_Lat * Math.cos(Longitude),
y: (Rn + Height) * Cos_Lat * Math.sin(Longitude),
z: ((Rn * (1 - es)) + Height) * Sin_Lat
};
} // cs_geodetic_to_geocentric()
function geocentricToGeodetic(p, es, a, b) {
/* local defintions and variables */
/* end-criterium of loop, accuracy of sin(Latitude) */
var genau = 1e-12;
var genau2 = (genau * genau);
var maxiter = 30;
var P; /* distance between semi-minor axis and location */
var RR; /* distance between center and location */
var CT; /* sin of geocentric latitude */
var ST; /* cos of geocentric latitude */
var RX;
var RK;
var RN; /* Earth radius at location */
var CPHI0; /* cos of start or old geodetic latitude in iterations */
var SPHI0; /* sin of start or old geodetic latitude in iterations */
var CPHI; /* cos of searched geodetic latitude */
var SPHI; /* sin of searched geodetic latitude */
var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */
var X = p.x;
var Y = p.y;
var Z = p.z ? p.z : 0.0; //Z value not always supplied
var Longitude;
var Latitude;
var Height;
P = Math.sqrt(X * X + Y * Y);
RR = Math.sqrt(X * X + Y * Y + Z * Z);
/* special cases for latitude and longitude */
if (P / a < genau) {
/* special case, if P=0. (X=0., Y=0.) */
Longitude = 0.0;
/* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
* of ellipsoid (=center of mass), Latitude becomes PI/2 */
if (RR / a < genau) {
Latitude = HALF_PI;
Height = -b;
return {
x: p.x,
y: p.y,
z: p.z
};
}
} else {
/* ellipsoidal (geodetic) longitude
* interval: -PI < Longitude <= +PI */
Longitude = Math.atan2(Y, X);
}
/* --------------------------------------------------------------
* Following iterative algorithm was developped by
* "Institut for Erdmessung", University of Hannover, July 1988.
* Internet: www.ife.uni-hannover.de
* Iterative computation of CPHI,SPHI and Height.
* Iteration of CPHI and SPHI to 10**-12 radian resp.
* 2*10**-7 arcsec.
* --------------------------------------------------------------
*/
CT = Z / RR;
ST = P / RR;
RX = 1.0 / Math.sqrt(1.0 - es * (2.0 - es) * ST * ST);
CPHI0 = ST * (1.0 - es) * RX;
SPHI0 = CT * RX;
iter = 0;
/* loop to find sin(Latitude) resp. Latitude
* until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
do {
iter++;
RN = a / Math.sqrt(1.0 - es * SPHI0 * SPHI0);
/* ellipsoidal (geodetic) height */
Height = P * CPHI0 + Z * SPHI0 - RN * (1.0 - es * SPHI0 * SPHI0);
RK = es * RN / (RN + Height);
RX = 1.0 / Math.sqrt(1.0 - RK * (2.0 - RK) * ST * ST);
CPHI = ST * (1.0 - RK) * RX;
SPHI = CT * RX;
SDPHI = SPHI * CPHI0 - CPHI * SPHI0;
CPHI0 = CPHI;
SPHI0 = SPHI;
}
while (SDPHI * SDPHI > genau2 && iter < maxiter);
/* ellipsoidal (geodetic) latitude */
Latitude = Math.atan(SPHI / Math.abs(CPHI));
return {
x: Longitude,
y: Latitude,
z: Height
};
} // cs_geocentric_to_geodetic()
/****************************************************************/
// pj_geocentic_to_wgs84( p )
// p = point to transform in geocentric coordinates (x,y,z)
/** point object, nothing fancy, just allows values to be
passed back and forth by reference rather than by value.
Other point classes may be used as long as they have
x and y properties, which will get modified in the transform method.
*/
function geocentricToWgs84(p, datum_type, datum_params) {
if (datum_type === PJD_3PARAM) {
// if( x[io] === HUGE_VAL )
// continue;
return {
x: p.x + datum_params[0],
y: p.y + datum_params[1],
z: p.z + datum_params[2],
};
} else if (datum_type === PJD_7PARAM) {
var Dx_BF = datum_params[0];
var Dy_BF = datum_params[1];
var Dz_BF = datum_params[2];
var Rx_BF = datum_params[3];
var Ry_BF = datum_params[4];
var Rz_BF = datum_params[5];
var M_BF = datum_params[6];
// if( x[io] === HUGE_VAL )
// continue;
return {
x: M_BF * (p.x - Rz_BF * p.y + Ry_BF * p.z) + Dx_BF,
y: M_BF * (Rz_BF * p.x + p.y - Rx_BF * p.z) + Dy_BF,
z: M_BF * (-Ry_BF * p.x + Rx_BF * p.y + p.z) + Dz_BF
};
}
} // cs_geocentric_to_wgs84
/****************************************************************/
// pj_geocentic_from_wgs84()
// coordinate system definition,
// point to transform in geocentric coordinates (x,y,z)
function geocentricFromWgs84(p, datum_type, datum_params) {
if (datum_type === PJD_3PARAM) {
//if( x[io] === HUGE_VAL )
// continue;
return {
x: p.x - datum_params[0],
y: p.y - datum_params[1],
z: p.z - datum_params[2],
};
} else if (datum_type === PJD_7PARAM) {
var Dx_BF = datum_params[0];
var Dy_BF = datum_params[1];
var Dz_BF = datum_params[2];
var Rx_BF = datum_params[3];
var Ry_BF = datum_params[4];
var Rz_BF = datum_params[5];
var M_BF = datum_params[6];
var x_tmp = (p.x - Dx_BF) / M_BF;
var y_tmp = (p.y - Dy_BF) / M_BF;
var z_tmp = (p.z - Dz_BF) / M_BF;
//if( x[io] === HUGE_VAL )
// continue;
return {
x: x_tmp + Rz_BF * y_tmp - Ry_BF * z_tmp,
y: -Rz_BF * x_tmp + y_tmp + Rx_BF * z_tmp,
z: Ry_BF * x_tmp - Rx_BF * y_tmp + z_tmp
};
} //cs_geocentric_from_wgs84()
}
function checkParams(type) {
return (type === PJD_3PARAM || type === PJD_7PARAM);
}
function datum_transform(source, dest, point) {
// Short cut if the datums are identical.
if (compareDatums(source, dest)) {
return point; // in this case, zero is sucess,
// whereas cs_compare_datums returns 1 to indicate TRUE
// confusing, should fix this
}
// Explicitly skip datum transform by setting 'datum=none' as parameter for either source or dest
if (source.datum_type === PJD_NODATUM || dest.datum_type === PJD_NODATUM) {
return point;
}
// If this datum requires grid shifts, then apply it to geodetic coordinates.
var source_a = source.a;
var source_es = source.es;
if (source.datum_type === PJD_GRIDSHIFT) {
var gridShiftCode = applyGridShift(source, false, point);
if (gridShiftCode !== 0) {
return undefined;
}
source_a = SRS_WGS84_SEMIMAJOR;
source_es = SRS_WGS84_ESQUARED;
}
var dest_a = dest.a;
var dest_b = dest.b;
var dest_es = dest.es;
if (dest.datum_type === PJD_GRIDSHIFT) {
dest_a = SRS_WGS84_SEMIMAJOR;
dest_b = SRS_WGS84_SEMIMINOR;
dest_es = SRS_WGS84_ESQUARED;
}
// Do we need to go through geocentric coordinates?
if (source_es === dest_es && source_a === dest_a && !checkParams(source.datum_type) && !checkParams(dest.datum_type)) {
return point;
}
// Convert to geocentric coordinates.
point = geodeticToGeocentric(point, source_es, source_a);
// Convert between datums
if (checkParams(source.datum_type)) {
point = geocentricToWgs84(point, source.datum_type, source.datum_params);
}
if (checkParams(dest.datum_type)) {
point = geocentricFromWgs84(point, dest.datum_type, dest.datum_params);
}
point = geocentricToGeodetic(point, dest_es, dest_a, dest_b);
if (dest.datum_type === PJD_GRIDSHIFT) {
var destGridShiftResult = applyGridShift(dest, true, point);
if (destGridShiftResult !== 0) {
return undefined;
}
}
return point;
}
function applyGridShift(source, inverse, point) {
if (source.grids === null || source.grids.length === 0) {
console.log('Grid shift grids not found');
return -1;
}
var input = {x: -point.x, y: point.y};
var output = {x: Number.NaN, y: Number.NaN};
var attemptedGrids = [];
outer:
for (var i = 0; i < source.grids.length; i++) {
var grid = source.grids[i];
attemptedGrids.push(grid.name);
if (grid.isNull) {
output = input;
break;
}
grid.mandatory;
if (grid.grid === null) {
if (grid.mandatory) {
console.log("Unable to find mandatory grid '" + grid.name + "'");
return -1;
}
continue;
}
var subgrids = grid.grid.subgrids;
for (var j = 0, jj = subgrids.length; j < jj; j++) {
var subgrid = subgrids[j];
// skip tables that don't match our point at all
var epsilon = (Math.abs(subgrid.del[1]) + Math.abs(subgrid.del[0])) / 10000.0;
var minX = subgrid.ll[0] - epsilon;
var minY = subgrid.ll[1] - epsilon;
var maxX = subgrid.ll[0] + (subgrid.lim[0] - 1) * subgrid.del[0] + epsilon;
var maxY = subgrid.ll[1] + (subgrid.lim[1] - 1) * subgrid.del[1] + epsilon;
if (minY > input.y || minX > input.x || maxY < input.y || maxX < input.x ) {
continue;
}
output = applySubgridShift(input, inverse, subgrid);
if (!isNaN(output.x)) {
break outer;
}
}
}
if (isNaN(output.x)) {
console.log("Failed to find a grid shift table for location '"+
-input.x * R2D + " " + input.y * R2D + " tried: '" + attemptedGrids + "'");
return -1;
}
point.x = -output.x;
point.y = output.y;
return 0;
}
function applySubgridShift(pin, inverse, ct) {
var val = {x: Number.NaN, y: Number.NaN};
if (isNaN(pin.x)) { return val; }
var tb = {x: pin.x, y: pin.y};
tb.x -= ct.ll[0];
tb.y -= ct.ll[1];
tb.x = adjust_lon(tb.x - Math.PI) + Math.PI;
var t = nadInterpolate(tb, ct);
if (inverse) {
if (isNaN(t.x)) {
return val;
}
t.x = tb.x - t.x;
t.y = tb.y - t.y;
var i = 9, tol = 1e-12;
var dif, del;
do {
del = nadInterpolate(t, ct);
if (isNaN(del.x)) {
console.log("Inverse grid shift iteration failed, presumably at grid edge. Using first approximation.");
break;
}
dif = {x: tb.x - (del.x + t.x), y: tb.y - (del.y + t.y)};
t.x += dif.x;
t.y += dif.y;
} while (i-- && Math.abs(dif.x) > tol && Math.abs(dif.y) > tol);
if (i < 0) {
console.log("Inverse grid shift iterator failed to converge.");
return val;
}
val.x = adjust_lon(t.x + ct.ll[0]);
val.y = t.y + ct.ll[1];
} else {
if (!isNaN(t.x)) {
val.x = pin.x + t.x;
val.y = pin.y + t.y;
}
}
return val;
}
function nadInterpolate(pin, ct) {
var t = {x: pin.x / ct.del[0], y: pin.y / ct.del[1]};
var indx = {x: Math.floor(t.x), y: Math.floor(t.y)};
var frct = {x: t.x - 1.0 * indx.x, y: t.y - 1.0 * indx.y};
var val= {x: Number.NaN, y: Number.NaN};
var inx;
if (indx.x < 0 || indx.x >= ct.lim[0]) {
return val;
}
if (indx.y < 0 || indx.y >= ct.lim[1]) {
return val;
}
inx = (indx.y * ct.lim[0]) + indx.x;
var f00 = {x: ct.cvs[inx][0], y: ct.cvs[inx][1]};
inx++;
var f10= {x: ct.cvs[inx][0], y: ct.cvs[inx][1]};
inx += ct.lim[0];
var f11 = {x: ct.cvs[inx][0], y: ct.cvs[inx][1]};
inx--;
var f01 = {x: ct.cvs[inx][0], y: ct.cvs[inx][1]};
var m11 = frct.x * frct.y, m10 = frct.x * (1.0 - frct.y),
m00 = (1.0 - frct.x) * (1.0 - frct.y), m01 = (1.0 - frct.x) * frct.y;
val.x = (m00 * f00.x + m10 * f10.x + m01 * f01.x + m11 * f11.x);
val.y = (m00 * f00.y + m10 * f10.y + m01 * f01.y + m11 * f11.y);
return val;
}
function adjust_axis(crs, denorm, point) {
var xin = point.x,
yin = point.y,
zin = point.z || 0.0;
var v, t, i;
var out = {};
for (i = 0; i < 3; i++) {
if (denorm && i === 2 && point.z === undefined) {
continue;
}
if (i === 0) {
v = xin;
if ("ew".indexOf(crs.axis[i]) !== -1) {
t = 'x';
} else {
t = 'y';
}
}
else if (i === 1) {
v = yin;
if ("ns".indexOf(crs.axis[i]) !== -1) {
t = 'y';
} else {
t = 'x';
}
}
else {
v = zin;
t = 'z';
}
switch (crs.axis[i]) {
case 'e':
out[t] = v;
break;
case 'w':
out[t] = -v;
break;
case 'n':
out[t] = v;
break;
case 's':
out[t] = -v;
break;
case 'u':
if (point[t] !== undefined) {
out.z = v;
}
break;
case 'd':
if (point[t] !== undefined) {
out.z = -v;
}
break;
default:
//console.log("ERROR: unknow axis ("+crs.axis[i]+") - check definition of "+crs.projName);
return null;
}
}
return out;
}
function common (array){
var out = {
x: array[0],
y: array[1]
};
if (array.length>2) {
out.z = array[2];
}
if (array.length>3) {
out.m = array[3];
}
return out;
}
function checkSanity (point) {
checkCoord(point.x);
checkCoord(point.y);
}
function checkCoord(num) {
if (typeof Number.isFinite === 'function') {
if (Number.isFinite(num)) {
return;
}
throw new TypeError('coordinates must be finite numbers');
}
if (typeof num !== 'number' || num !== num || !isFinite(num)) {
throw new TypeError('coordinates must be finite numbers');
}
}
function checkNotWGS(source, dest) {
return (
(source.datum.datum_type === PJD_3PARAM || source.datum.datum_type === PJD_7PARAM || source.datum.datum_type === PJD_GRIDSHIFT) && dest.datumCode !== 'WGS84') ||
((dest.datum.datum_type === PJD_3PARAM || dest.datum.datum_type === PJD_7PARAM || dest.datum.datum_type === PJD_GRIDSHIFT) && source.datumCode !== 'WGS84');
}
function transform(source, dest, point, enforceAxis) {
var wgs84;
if (Array.isArray(point)) {
point = common(point);
} else {
// Clone the point object so inputs don't get modified
point = {
x: point.x,
y: point.y,
z: point.z,
m: point.m
};
}
var hasZ = point.z !== undefined;
checkSanity(point);
// Workaround for datum shifts towgs84, if either source or destination projection is not wgs84
if (source.datum && dest.datum && checkNotWGS(source, dest)) {
wgs84 = new Projection('WGS84');
point = transform(source, wgs84, point, enforceAxis);
source = wgs84;
}
// DGR, 2010/11/12
if (enforceAxis && source.axis !== 'enu') {
point = adjust_axis(source, false, point);
}
// Transform source points to long/lat, if they aren't already.
if (source.projName === 'longlat') {
point = {
x: point.x * D2R$1,
y: point.y * D2R$1,
z: point.z || 0
};
} else {
if (source.to_meter) {
point = {
x: point.x * source.to_meter,
y: point.y * source.to_meter,
z: point.z || 0
};
}
point = source.inverse(point); // Convert Cartesian to longlat
if (!point) {
return;
}
}
// Adjust for the prime meridian if necessary
if (source.from_greenwich) {
point.x += source.from_greenwich;
}
// Convert datums if needed, and if possible.
point = datum_transform(source.datum, dest.datum, point);
if (!point) {
return;
}
// Adjust for the prime meridian if necessary
if (dest.from_greenwich) {
point = {
x: point.x - dest.from_greenwich,
y: point.y,
z: point.z || 0
};
}
if (dest.projName === 'longlat') {
// convert radians to decimal degrees
point = {
x: point.x * R2D,
y: point.y * R2D,
z: point.z || 0
};
} else { // else project
point = dest.forward(point);
if (dest.to_meter) {
point = {
x: point.x / dest.to_meter,
y: point.y / dest.to_meter,
z: point.z || 0
};
}
}
// DGR, 2010/11/12
if (enforceAxis && dest.axis !== 'enu') {
return adjust_axis(dest, true, point);
}
if (point && !hasZ) {
delete point.z;
}
return point;
}
var wgs84 = Projection('WGS84');
function transformer(from, to, coords, enforceAxis) {
var transformedArray, out, keys;
if (Array.isArray(coords)) {
transformedArray = transform(from, to, coords, enforceAxis) || {x: NaN, y: NaN};
if (coords.length > 2) {
if ((typeof from.name !== 'undefined' && from.name === 'geocent') || (typeof to.name !== 'undefined' && to.name === 'geocent')) {
if (typeof transformedArray.z === 'number') {
return [transformedArray.x, transformedArray.y, transformedArray.z].concat(coords.slice(3));
} else {
return [transformedArray.x, transformedArray.y, coords[2]].concat(coords.slice(3));
}
} else {
return [transformedArray.x, transformedArray.y].concat(coords.slice(2));
}
} else {
return [transformedArray.x, transformedArray.y];
}
} else {
out = transform(from, to, coords, enforceAxis);
keys = Object.keys(coords);
if (keys.length === 2) {
return out;
}
keys.forEach(function (key) {
if ((typeof from.name !== 'undefined' && from.name === 'geocent') || (typeof to.name !== 'undefined' && to.name === 'geocent')) {
if (key === 'x' || key === 'y' || key === 'z') {
return;
}
} else {
if (key === 'x' || key === 'y') {
return;
}
}
out[key] = coords[key];
});
return out;
}
}
function checkProj(item) {
if (item instanceof Projection) {
return item;
}
if (item.oProj) {
return item.oProj;
}
return Projection(item);
}
function proj4(fromProj, toProj, coord) {
fromProj = checkProj(fromProj);
var single = false;
var obj;
if (typeof toProj === 'undefined') {
toProj = fromProj;
fromProj = wgs84;
single = true;
} else if (typeof toProj.x !== 'undefined' || Array.isArray(toProj)) {
coord = toProj;
toProj = fromProj;
fromProj = wgs84;
single = true;
}
toProj = checkProj(toProj);
if (coord) {
return transformer(fromProj, toProj, coord);
} else {
obj = {
forward: function (coords, enforceAxis) {
return transformer(fromProj, toProj, coords, enforceAxis);
},
inverse: function (coords, enforceAxis) {
return transformer(toProj, fromProj, coords, enforceAxis);
}
};
if (single) {
obj.oProj = toProj;
}
return obj;
}
}
/**
* UTM zones are grouped, and assigned to one of a group of 6
* sets.
*
* {int} @private
*/
var NUM_100K_SETS = 6;
/**
* The column letters (for easting) of the lower left value, per
* set.
*
* {string} @private
*/
var SET_ORIGIN_COLUMN_LETTERS = 'AJSAJS';
/**
* The row letters (for northing) of the lower left value, per
* set.
*
* {string} @private
*/
var SET_ORIGIN_ROW_LETTERS = 'AFAFAF';
var A = 65; // A
var I = 73; // I
var O = 79; // O
var V = 86; // V
var Z = 90; // Z
var mgrs = {
forward: forward$u,
inverse: inverse$u,
toPoint: toPoint
};
/**
* Conversion of lat/lon to MGRS.
*
* @param {object} ll Object literal with lat and lon properties on a
* WGS84 ellipsoid.
* @param {int} accuracy Accuracy in digits (5 for 1 m, 4 for 10 m, 3 for
* 100 m, 2 for 1000 m or 1 for 10000 m). Optional, default is 5.
* @return {string} the MGRS string for the given location and accuracy.
*/
function forward$u(ll, accuracy) {
accuracy = accuracy || 5; // default accuracy 1m
return encode(LLtoUTM({
lat: ll[1],
lon: ll[0]
}), accuracy);
}
/**
* Conversion of MGRS to lat/lon.
*
* @param {string} mgrs MGRS string.
* @return {array} An array with left (longitude), bottom (latitude), right
* (longitude) and top (latitude) values in WGS84, representing the
* bounding box for the provided MGRS reference.
*/
function inverse$u(mgrs) {
var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
if (bbox.lat && bbox.lon) {
return [bbox.lon, bbox.lat, bbox.lon, bbox.lat];
}
return [bbox.left, bbox.bottom, bbox.right, bbox.top];
}
function toPoint(mgrs) {
var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
if (bbox.lat && bbox.lon) {
return [bbox.lon, bbox.lat];
}
return [(bbox.left + bbox.right) / 2, (bbox.top + bbox.bottom) / 2];
}/**
* Conversion from degrees to radians.
*
* @private
* @param {number} deg the angle in degrees.
* @return {number} the angle in radians.
*/
function degToRad(deg) {
return (deg * (Math.PI / 180.0));
}
/**
* Conversion from radians to degrees.
*
* @private
* @param {number} rad the angle in radians.
* @return {number} the angle in degrees.
*/
function radToDeg(rad) {
return (180.0 * (rad / Math.PI));
}
/**
* Converts a set of Longitude and Latitude co-ordinates to UTM
* using the WGS84 ellipsoid.
*
* @private
* @param {object} ll Object literal with lat and lon properties
* representing the WGS84 coordinate to be converted.
* @return {object} Object literal containing the UTM value with easting,
* northing, zoneNumber and zoneLetter properties, and an optional
* accuracy property in digits. Returns null if the conversion failed.
*/
function LLtoUTM(ll) {
var Lat = ll.lat;
var Long = ll.lon;
var a = 6378137.0; //ellip.radius;
var eccSquared = 0.00669438; //ellip.eccsq;
var k0 = 0.9996;
var LongOrigin;
var eccPrimeSquared;
var N, T, C, A, M;
var LatRad = degToRad(Lat);
var LongRad = degToRad(Long);
var LongOriginRad;
var ZoneNumber;
// (int)
ZoneNumber = Math.floor((Long + 180) / 6) + 1;
//Make sure the longitude 180.00 is in Zone 60
if (Long === 180) {
ZoneNumber = 60;
}
// Special zone for Norway
if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) {
ZoneNumber = 32;
}
// Special zones for Svalbard
if (Lat >= 72.0 && Lat < 84.0) {
if (Long >= 0.0 && Long < 9.0) {
ZoneNumber = 31;
}
else if (Long >= 9.0 && Long < 21.0) {
ZoneNumber = 33;
}
else if (Long >= 21.0 && Long < 33.0) {
ZoneNumber = 35;
}
else if (Long >= 33.0 && Long < 42.0) {
ZoneNumber = 37;
}
}
LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3; //+3 puts origin
// in middle of
// zone
LongOriginRad = degToRad(LongOrigin);
eccPrimeSquared = (eccSquared) / (1 - eccSquared);
N = a / Math.sqrt(1 - eccSquared * Math.sin(LatRad) * Math.sin(LatRad));
T = Math.tan(LatRad) * Math.tan(LatRad);
C = eccPrimeSquared * Math.cos(LatRad) * Math.cos(LatRad);
A = Math.cos(LatRad) * (LongRad - LongOriginRad);
M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad - (3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(2 * LatRad) + (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(4 * LatRad) - (35 * eccSquared * eccSquared * eccSquared / 3072) * Math.sin(6 * LatRad));
var UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6.0 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120.0) + 500000.0);
var UTMNorthing = (k0 * (M + N * Math.tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24.0 + (61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720.0)));
if (Lat < 0.0) {
UTMNorthing += 10000000.0; //10000000 meter offset for
// southern hemisphere
}
return {
northing: Math.round(UTMNorthing),
easting: Math.round(UTMEasting),
zoneNumber: ZoneNumber,
zoneLetter: getLetterDesignator(Lat)
};
}
/**
* Converts UTM coords to lat/long, using the WGS84 ellipsoid. This is a convenience
* class where the Zone can be specified as a single string eg."60N" which
* is then broken down into the ZoneNumber and ZoneLetter.
*
* @private
* @param {object} utm An object literal with northing, easting, zoneNumber
* and zoneLetter properties. If an optional accuracy property is
* provided (in meters), a bounding box will be returned instead of
* latitude and longitude.
* @return {object} An object literal containing either lat and lon values
* (if no accuracy was provided), or top, right, bottom and left values
* for the bounding box calculated according to the provided accuracy.
* Returns null if the conversion failed.
*/
function UTMtoLL(utm) {
var UTMNorthing = utm.northing;
var UTMEasting = utm.easting;
var zoneLetter = utm.zoneLetter;
var zoneNumber = utm.zoneNumber;
// check the ZoneNummber is valid
if (zoneNumber < 0 || zoneNumber > 60) {
return null;
}
var k0 = 0.9996;
var a = 6378137.0; //ellip.radius;
var eccSquared = 0.00669438; //ellip.eccsq;
var eccPrimeSquared;
var e1 = (1 - Math.sqrt(1 - eccSquared)) / (1 + Math.sqrt(1 - eccSquared));
var N1, T1, C1, R1, D, M;
var LongOrigin;
var mu, phi1Rad;
// remove 500,000 meter offset for longitude
var x = UTMEasting - 500000.0;
var y = UTMNorthing;
// We must know somehow if we are in the Northern or Southern
// hemisphere, this is the only time we use the letter So even
// if the Zone letter isn't exactly correct it should indicate
// the hemisphere correctly
if (zoneLetter < 'N') {
y -= 10000000.0; // remove 10,000,000 meter offset used
// for southern hemisphere
}
// There are 60 zones with zone 1 being at West -180 to -174
LongOrigin = (zoneNumber - 1) * 6 - 180 + 3; // +3 puts origin
// in middle of
// zone
eccPrimeSquared = (eccSquared) / (1 - eccSquared);
M = y / k0;
mu = M / (a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256));
phi1Rad = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * Math.sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * Math.sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * Math.sin(6 * mu);
// double phi1 = ProjMath.radToDeg(phi1Rad);
N1 = a / Math.sqrt(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad));
T1 = Math.tan(phi1Rad) * Math.tan(phi1Rad);
C1 = eccPrimeSquared * Math.cos(phi1Rad) * Math.cos(phi1Rad);
R1 = a * (1 - eccSquared) / Math.pow(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad), 1.5);
D = x / (N1 * k0);
var lat = phi1Rad - (N1 * Math.tan(phi1Rad) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720);
lat = radToDeg(lat);
var lon = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1) * D * D * D * D * D / 120) / Math.cos(phi1Rad);
lon = LongOrigin + radToDeg(lon);
var result;
if (utm.accuracy) {
var topRight = UTMtoLL({
northing: utm.northing + utm.accuracy,
easting: utm.easting + utm.accuracy,
zoneLetter: utm.zoneLetter,
zoneNumber: utm.zoneNumber
});
result = {
top: topRight.lat,
right: topRight.lon,
bottom: lat,
left: lon
};
}
else {
result = {
lat: lat,
lon: lon
};
}
return result;
}
/**
* Calculates the MGRS letter designator for the given latitude.
*
* @private
* @param {number} lat The latitude in WGS84 to get the letter designator
* for.
* @return {char} The letter designator.
*/
function getLetterDesignator(lat) {
//This is here as an error flag to show that the Latitude is
//outside MGRS limits
var LetterDesignator = 'Z';
if ((84 >= lat) && (lat >= 72)) {
LetterDesignator = 'X';
}
else if ((72 > lat) && (lat >= 64)) {
LetterDesignator = 'W';
}
else if ((64 > lat) && (lat >= 56)) {
LetterDesignator = 'V';
}
else if ((56 > lat) && (lat >= 48)) {
LetterDesignator = 'U';
}
else if ((48 > lat) && (lat >= 40)) {
LetterDesignator = 'T';
}
else if ((40 > lat) && (lat >= 32)) {
LetterDesignator = 'S';
}
else if ((32 > lat) && (lat >= 24)) {
LetterDesignator = 'R';
}
else if ((24 > lat) && (lat >= 16)) {
LetterDesignator = 'Q';
}
else if ((16 > lat) && (lat >= 8)) {
LetterDesignator = 'P';
}
else if ((8 > lat) && (lat >= 0)) {
LetterDesignator = 'N';
}
else if ((0 > lat) && (lat >= -8)) {
LetterDesignator = 'M';
}
else if ((-8 > lat) && (lat >= -16)) {
LetterDesignator = 'L';
}
else if ((-16 > lat) && (lat >= -24)) {
LetterDesignator = 'K';
}
else if ((-24 > lat) && (lat >= -32)) {
LetterDesignator = 'J';
}
else if ((-32 > lat) && (lat >= -40)) {
LetterDesignator = 'H';
}
else if ((-40 > lat) && (lat >= -48)) {
LetterDesignator = 'G';
}
else if ((-48 > lat) && (lat >= -56)) {
LetterDesignator = 'F';
}
else if ((-56 > lat) && (lat >= -64)) {
LetterDesignator = 'E';
}
else if ((-64 > lat) && (lat >= -72)) {
LetterDesignator = 'D';
}
else if ((-72 > lat) && (lat >= -80)) {
LetterDesignator = 'C';
}
return LetterDesignator;
}
/**
* Encodes a UTM location as MGRS string.
*
* @private
* @param {object} utm An object literal with easting, northing,
* zoneLetter, zoneNumber
* @param {number} accuracy Accuracy in digits (1-5).
* @return {string} MGRS string for the given UTM location.
*/
function encode(utm, accuracy) {
// prepend with leading zeroes
var seasting = "00000" + utm.easting,
snorthing = "00000" + utm.northing;
return utm.zoneNumber + utm.zoneLetter + get100kID(utm.easting, utm.northing, utm.zoneNumber) + seasting.substr(seasting.length - 5, accuracy) + snorthing.substr(snorthing.length - 5, accuracy);
}
/**
* Get the two letter 100k designator for a given UTM easting,
* northing and zone number value.
*
* @private
* @param {number} easting
* @param {number} northing
* @param {number} zoneNumber
* @return the two letter 100k designator for the given UTM location.
*/
function get100kID(easting, northing, zoneNumber) {
var setParm = get100kSetForZone(zoneNumber);
var setColumn = Math.floor(easting / 100000);
var setRow = Math.floor(northing / 100000) % 20;
return getLetter100kID(setColumn, setRow, setParm);
}
/**
* Given a UTM zone number, figure out the MGRS 100K set it is in.
*
* @private
* @param {number} i An UTM zone number.
* @return {number} the 100k set the UTM zone is in.
*/
function get100kSetForZone(i) {
var setParm = i % NUM_100K_SETS;
if (setParm === 0) {
setParm = NUM_100K_SETS;
}
return setParm;
}
/**
* Get the two-letter MGRS 100k designator given information
* translated from the UTM northing, easting and zone number.
*
* @private
* @param {number} column the column index as it relates to the MGRS
* 100k set spreadsheet, created from the UTM easting.
* Values are 1-8.
* @param {number} row the row index as it relates to the MGRS 100k set
* spreadsheet, created from the UTM northing value. Values
* are from 0-19.
* @param {number} parm the set block, as it relates to the MGRS 100k set
* spreadsheet, created from the UTM zone. Values are from
* 1-60.
* @return two letter MGRS 100k code.
*/
function getLetter100kID(column, row, parm) {
// colOrigin and rowOrigin are the letters at the origin of the set
var index = parm - 1;
var colOrigin = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(index);
var rowOrigin = SET_ORIGIN_ROW_LETTERS.charCodeAt(index);
// colInt and rowInt are the letters to build to return
var colInt = colOrigin + column - 1;
var rowInt = rowOrigin + row;
var rollover = false;
if (colInt > Z) {
colInt = colInt - Z + A - 1;
rollover = true;
}
if (colInt === I || (colOrigin < I && colInt > I) || ((colInt > I || colOrigin < I) && rollover)) {
colInt++;
}
if (colInt === O || (colOrigin < O && colInt > O) || ((colInt > O || colOrigin < O) && rollover)) {
colInt++;
if (colInt === I) {
colInt++;
}
}
if (colInt > Z) {
colInt = colInt - Z + A - 1;
}
if (rowInt > V) {
rowInt = rowInt - V + A - 1;
rollover = true;
}
else {
rollover = false;
}
if (((rowInt === I) || ((rowOrigin < I) && (rowInt > I))) || (((rowInt > I) || (rowOrigin < I)) && rollover)) {
rowInt++;
}
if (((rowInt === O) || ((rowOrigin < O) && (rowInt > O))) || (((rowInt > O) || (rowOrigin < O)) && rollover)) {
rowInt++;
if (rowInt === I) {
rowInt++;
}
}
if (rowInt > V) {
rowInt = rowInt - V + A - 1;
}
var twoLetter = String.fromCharCode(colInt) + String.fromCharCode(rowInt);
return twoLetter;
}
/**
* Decode the UTM parameters from a MGRS string.
*
* @private
* @param {string} mgrsString an UPPERCASE coordinate string is expected.
* @return {object} An object literal with easting, northing, zoneLetter,
* zoneNumber and accuracy (in meters) properties.
*/
function decode(mgrsString) {
if (mgrsString && mgrsString.length === 0) {
throw ("MGRSPoint coverting from nothing");
}
var length = mgrsString.length;
var hunK = null;
var sb = "";
var testChar;
var i = 0;
// get Zone number
while (!(/[A-Z]/).test(testChar = mgrsString.charAt(i))) {
if (i >= 2) {
throw ("MGRSPoint bad conversion from: " + mgrsString);
}
sb += testChar;
i++;
}
var zoneNumber = parseInt(sb, 10);
if (i === 0 || i + 3 > length) {
// A good MGRS string has to be 4-5 digits long,
// ##AAA/#AAA at least.
throw ("MGRSPoint bad conversion from: " + mgrsString);
}
var zoneLetter = mgrsString.charAt(i++);
// Should we check the zone letter here? Why not.
if (zoneLetter <= 'A' || zoneLetter === 'B' || zoneLetter === 'Y' || zoneLetter >= 'Z' || zoneLetter === 'I' || zoneLetter === 'O') {
throw ("MGRSPoint zone letter " + zoneLetter + " not handled: " + mgrsString);
}
hunK = mgrsString.substring(i, i += 2);
var set = get100kSetForZone(zoneNumber);
var east100k = getEastingFromChar(hunK.charAt(0), set);
var north100k = getNorthingFromChar(hunK.charAt(1), set);
// We have a bug where the northing may be 2000000 too low.
// How
// do we know when to roll over?
while (north100k < getMinNorthing(zoneLetter)) {
north100k += 2000000;
}
// calculate the char index for easting/northing separator
var remainder = length - i;
if (remainder % 2 !== 0) {
throw ("MGRSPoint has to have an even number \nof digits after the zone letter and two 100km letters - front \nhalf for easting meters, second half for \nnorthing meters" + mgrsString);
}
var sep = remainder / 2;
var sepEasting = 0.0;
var sepNorthing = 0.0;
var accuracyBonus, sepEastingString, sepNorthingString, easting, northing;
if (sep > 0) {
accuracyBonus = 100000.0 / Math.pow(10, sep);
sepEastingString = mgrsString.substring(i, i + sep);
sepEasting = parseFloat(sepEastingString) * accuracyBonus;
sepNorthingString = mgrsString.substring(i + sep);
sepNorthing = parseFloat(sepNorthingString) * accuracyBonus;
}
easting = sepEasting + east100k;
northing = sepNorthing + north100k;
return {
easting: easting,
northing: northing,
zoneLetter: zoneLetter,
zoneNumber: zoneNumber,
accuracy: accuracyBonus
};
}
/**
* Given the first letter from a two-letter MGRS 100k zone, and given the
* MGRS table set for the zone number, figure out the easting value that
* should be added to the other, secondary easting value.
*
* @private
* @param {char} e The first letter from a two-letter MGRS 100´k zone.
* @param {number} set The MGRS table set for the zone number.
* @return {number} The easting value for the given letter and set.
*/
function getEastingFromChar(e, set) {
// colOrigin is the letter at the origin of the set for the
// column
var curCol = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(set - 1);
var eastingValue = 100000.0;
var rewindMarker = false;
while (curCol !== e.charCodeAt(0)) {
curCol++;
if (curCol === I) {
curCol++;
}
if (curCol === O) {
curCol++;
}
if (curCol > Z) {
if (rewindMarker) {
throw ("Bad character: " + e);
}
curCol = A;
rewindMarker = true;
}
eastingValue += 100000.0;
}
return eastingValue;
}
/**
* Given the second letter from a two-letter MGRS 100k zone, and given the
* MGRS table set for the zone number, figure out the northing value that
* should be added to the other, secondary northing value. You have to
* remember that Northings are determined from the equator, and the vertical
* cycle of letters mean a 2000000 additional northing meters. This happens
* approx. every 18 degrees of latitude. This method does *NOT* count any
* additional northings. You have to figure out how many 2000000 meters need
* to be added for the zone letter of the MGRS coordinate.
*
* @private
* @param {char} n Second letter of the MGRS 100k zone
* @param {number} set The MGRS table set number, which is dependent on the
* UTM zone number.
* @return {number} The northing value for the given letter and set.
*/
function getNorthingFromChar(n, set) {
if (n > 'V') {
throw ("MGRSPoint given invalid Northing " + n);
}
// rowOrigin is the letter at the origin of the set for the
// column
var curRow = SET_ORIGIN_ROW_LETTERS.charCodeAt(set - 1);
var northingValue = 0.0;
var rewindMarker = false;
while (curRow !== n.charCodeAt(0)) {
curRow++;
if (curRow === I) {
curRow++;
}
if (curRow === O) {
curRow++;
}
// fixing a bug making whole application hang in this loop
// when 'n' is a wrong character
if (curRow > V) {
if (rewindMarker) { // making sure that this loop ends
throw ("Bad character: " + n);
}
curRow = A;
rewindMarker = true;
}
northingValue += 100000.0;
}
return northingValue;
}
/**
* The function getMinNorthing returns the minimum northing value of a MGRS
* zone.
*
* Ported from Geotrans' c Lattitude_Band_Value structure table.
*
* @private
* @param {char} zoneLetter The MGRS zone to get the min northing for.
* @return {number}
*/
function getMinNorthing(zoneLetter) {
var northing;
switch (zoneLetter) {
case 'C':
northing = 1100000.0;
break;
case 'D':
northing = 2000000.0;
break;
case 'E':
northing = 2800000.0;
break;
case 'F':
northing = 3700000.0;
break;
case 'G':
northing = 4600000.0;
break;
case 'H':
northing = 5500000.0;
break;
case 'J':
northing = 6400000.0;
break;
case 'K':
northing = 7300000.0;
break;
case 'L':
northing = 8200000.0;
break;
case 'M':
northing = 9100000.0;
break;
case 'N':
northing = 0.0;
break;
case 'P':
northing = 800000.0;
break;
case 'Q':
northing = 1700000.0;
break;
case 'R':
northing = 2600000.0;
break;
case 'S':
northing = 3500000.0;
break;
case 'T':
northing = 4400000.0;
break;
case 'U':
northing = 5300000.0;
break;
case 'V':
northing = 6200000.0;
break;
case 'W':
northing = 7000000.0;
break;
case 'X':
northing = 7900000.0;
break;
default:
northing = -1;
}
if (northing >= 0.0) {
return northing;
}
else {
throw ("Invalid zone letter: " + zoneLetter);
}
}
function Point(x, y, z) {
if (!(this instanceof Point)) {
return new Point(x, y, z);
}
if (Array.isArray(x)) {
this.x = x[0];
this.y = x[1];
this.z = x[2] || 0.0;
} else if(typeof x === 'object') {
this.x = x.x;
this.y = x.y;
this.z = x.z || 0.0;
} else if (typeof x === 'string' && typeof y === 'undefined') {
var coords = x.split(',');
this.x = parseFloat(coords[0], 10);
this.y = parseFloat(coords[1], 10);
this.z = parseFloat(coords[2], 10) || 0.0;
} else {
this.x = x;
this.y = y;
this.z = z || 0.0;
}
console.warn('proj4.Point will be removed in version 3, use proj4.toPoint');
}
Point.fromMGRS = function(mgrsStr) {
return new Point(toPoint(mgrsStr));
};
Point.prototype.toMGRS = function(accuracy) {
return forward$u([this.x, this.y], accuracy);
};
var C00 = 1;
var C02 = 0.25;
var C04 = 0.046875;
var C06 = 0.01953125;
var C08 = 0.01068115234375;
var C22 = 0.75;
var C44 = 0.46875;
var C46 = 0.01302083333333333333;
var C48 = 0.00712076822916666666;
var C66 = 0.36458333333333333333;
var C68 = 0.00569661458333333333;
var C88 = 0.3076171875;
function pj_enfn(es) {
var en = [];
en[0] = C00 - es * (C02 + es * (C04 + es * (C06 + es * C08)));
en[1] = es * (C22 - es * (C04 + es * (C06 + es * C08)));
var t = es * es;
en[2] = t * (C44 - es * (C46 + es * C48));
t *= es;
en[3] = t * (C66 - es * C68);
en[4] = t * es * C88;
return en;
}
function pj_mlfn(phi, sphi, cphi, en) {
cphi *= sphi;
sphi *= sphi;
return (en[0] * phi - cphi * (en[1] + sphi * (en[2] + sphi * (en[3] + sphi * en[4]))));
}
var MAX_ITER$3 = 20;
function pj_inv_mlfn(arg, es, en) {
var k = 1 / (1 - es);
var phi = arg;
for (var i = MAX_ITER$3; i; --i) { /* rarely goes over 2 iterations */
var s = Math.sin(phi);
var t = 1 - es * s * s;
//t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg;
//phi -= t * (t * Math.sqrt(t)) * k;
t = (pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k;
phi -= t;
if (Math.abs(t) < EPSLN) {
return phi;
}
}
//..reportError("cass:pj_inv_mlfn: Convergence error");
return phi;
}
// Heavily based on this tmerc projection implementation
// https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/tmerc.js
function init$v() {
this.x0 = this.x0 !== undefined ? this.x0 : 0;
this.y0 = this.y0 !== undefined ? this.y0 : 0;
this.long0 = this.long0 !== undefined ? this.long0 : 0;
this.lat0 = this.lat0 !== undefined ? this.lat0 : 0;
if (this.es) {
this.en = pj_enfn(this.es);
this.ml0 = pj_mlfn(this.lat0, Math.sin(this.lat0), Math.cos(this.lat0), this.en);
}
}
/**
Transverse Mercator Forward - long/lat to x/y
long/lat in radians
*/
function forward$t(p) {
var lon = p.x;
var lat = p.y;
var delta_lon = adjust_lon(lon - this.long0);
var con;
var x, y;
var sin_phi = Math.sin(lat);
var cos_phi = Math.cos(lat);
if (!this.es) {
var b = cos_phi * Math.sin(delta_lon);
if ((Math.abs(Math.abs(b) - 1)) < EPSLN) {
return (93);
}
else {
x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b)) + this.x0;
y = cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - Math.pow(b, 2));
b = Math.abs(y);
if (b >= 1) {
if ((b - 1) > EPSLN) {
return (93);
}
else {
y = 0;
}
}
else {
y = Math.acos(y);
}
if (lat < 0) {
y = -y;
}
y = this.a * this.k0 * (y - this.lat0) + this.y0;
}
}
else {
var al = cos_phi * delta_lon;
var als = Math.pow(al, 2);
var c = this.ep2 * Math.pow(cos_phi, 2);
var cs = Math.pow(c, 2);
var tq = Math.abs(cos_phi) > EPSLN ? Math.tan(lat) : 0;
var t = Math.pow(tq, 2);
var ts = Math.pow(t, 2);
con = 1 - this.es * Math.pow(sin_phi, 2);
al = al / Math.sqrt(con);
var ml = pj_mlfn(lat, sin_phi, cos_phi, this.en);
x = this.a * (this.k0 * al * (1 +
als / 6 * (1 - t + c +
als / 20 * (5 - 18 * t + ts + 14 * c - 58 * t * c +
als / 42 * (61 + 179 * ts - ts * t - 479 * t))))) +
this.x0;
y = this.a * (this.k0 * (ml - this.ml0 +
sin_phi * delta_lon * al / 2 * (1 +
als / 12 * (5 - t + 9 * c + 4 * cs +
als / 30 * (61 + ts - 58 * t + 270 * c - 330 * t * c +
als / 56 * (1385 + 543 * ts - ts * t - 3111 * t)))))) +
this.y0;
}
p.x = x;
p.y = y;
return p;
}
/**
Transverse Mercator Inverse - x/y to long/lat
*/
function inverse$t(p) {
var con, phi;
var lat, lon;
var x = (p.x - this.x0) * (1 / this.a);
var y = (p.y - this.y0) * (1 / this.a);
if (!this.es) {
var f = Math.exp(x / this.k0);
var g = 0.5 * (f - 1 / f);
var temp = this.lat0 + y / this.k0;
var h = Math.cos(temp);
con = Math.sqrt((1 - Math.pow(h, 2)) / (1 + Math.pow(g, 2)));
lat = Math.asin(con);
if (y < 0) {
lat = -lat;
}
if ((g === 0) && (h === 0)) {
lon = 0;
}
else {
lon = adjust_lon(Math.atan2(g, h) + this.long0);
}
}
else { // ellipsoidal form
con = this.ml0 + y / this.k0;
phi = pj_inv_mlfn(con, this.es, this.en);
if (Math.abs(phi) < HALF_PI) {
var sin_phi = Math.sin(phi);
var cos_phi = Math.cos(phi);
var tan_phi = Math.abs(cos_phi) > EPSLN ? Math.tan(phi) : 0;
var c = this.ep2 * Math.pow(cos_phi, 2);
var cs = Math.pow(c, 2);
var t = Math.pow(tan_phi, 2);
var ts = Math.pow(t, 2);
con = 1 - this.es * Math.pow(sin_phi, 2);
var d = x * Math.sqrt(con) / this.k0;
var ds = Math.pow(d, 2);
con = con * tan_phi;
lat = phi - (con * ds / (1 - this.es)) * 0.5 * (1 -
ds / 12 * (5 + 3 * t - 9 * c * t + c - 4 * cs -
ds / 30 * (61 + 90 * t - 252 * c * t + 45 * ts + 46 * c -
ds / 56 * (1385 + 3633 * t + 4095 * ts + 1574 * ts * t))));
lon = adjust_lon(this.long0 + (d * (1 -
ds / 6 * (1 + 2 * t + c -
ds / 20 * (5 + 28 * t + 24 * ts + 8 * c * t + 6 * c -
ds / 42 * (61 + 662 * t + 1320 * ts + 720 * ts * t)))) / cos_phi));
}
else {
lat = HALF_PI * sign(y);
lon = 0;
}
}
p.x = lon;
p.y = lat;
return p;
}
var names$u = ["Fast_Transverse_Mercator", "Fast Transverse Mercator"];
var tmerc = {
init: init$v,
forward: forward$t,
inverse: inverse$t,
names: names$u
};
function sinh(x) {
var r = Math.exp(x);
r = (r - 1 / r) / 2;
return r;
}
function hypot(x, y) {
x = Math.abs(x);
y = Math.abs(y);
var a = Math.max(x, y);
var b = Math.min(x, y) / (a ? a : 1);
return a * Math.sqrt(1 + Math.pow(b, 2));
}
function log1py(x) {
var y = 1 + x;
var z = y - 1;
return z === 0 ? x : x * Math.log(y) / z;
}
function asinhy(x) {
var y = Math.abs(x);
y = log1py(y * (1 + y / (hypot(1, y) + 1)));
return x < 0 ? -y : y;
}
function gatg(pp, B) {
var cos_2B = 2 * Math.cos(2 * B);
var i = pp.length - 1;
var h1 = pp[i];
var h2 = 0;
var h;
while (--i >= 0) {
h = -h2 + cos_2B * h1 + pp[i];
h2 = h1;
h1 = h;
}
return (B + h * Math.sin(2 * B));
}
function clens(pp, arg_r) {
var r = 2 * Math.cos(arg_r);
var i = pp.length - 1;
var hr1 = pp[i];
var hr2 = 0;
var hr;
while (--i >= 0) {
hr = -hr2 + r * hr1 + pp[i];
hr2 = hr1;
hr1 = hr;
}
return Math.sin(arg_r) * hr;
}
function cosh(x) {
var r = Math.exp(x);
r = (r + 1 / r) / 2;
return r;
}
function clens_cmplx(pp, arg_r, arg_i) {
var sin_arg_r = Math.sin(arg_r);
var cos_arg_r = Math.cos(arg_r);
var sinh_arg_i = sinh(arg_i);
var cosh_arg_i = cosh(arg_i);
var r = 2 * cos_arg_r * cosh_arg_i;
var i = -2 * sin_arg_r * sinh_arg_i;
var j = pp.length - 1;
var hr = pp[j];
var hi1 = 0;
var hr1 = 0;
var hi = 0;
var hr2;
var hi2;
while (--j >= 0) {
hr2 = hr1;
hi2 = hi1;
hr1 = hr;
hi1 = hi;
hr = -hr2 + r * hr1 - i * hi1 + pp[j];
hi = -hi2 + i * hr1 + r * hi1;
}
r = sin_arg_r * cosh_arg_i;
i = cos_arg_r * sinh_arg_i;
return [r * hr - i * hi, r * hi + i * hr];
}
// Heavily based on this etmerc projection implementation
// https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/etmerc.js
function init$u() {
if (!this.approx && (isNaN(this.es) || this.es <= 0)) {
throw new Error('Incorrect elliptical usage. Try using the +approx option in the proj string, or PROJECTION["Fast_Transverse_Mercator"] in the WKT.');
}
if (this.approx) {
// When '+approx' is set, use tmerc instead
tmerc.init.apply(this);
this.forward = tmerc.forward;
this.inverse = tmerc.inverse;
}
this.x0 = this.x0 !== undefined ? this.x0 : 0;
this.y0 = this.y0 !== undefined ? this.y0 : 0;
this.long0 = this.long0 !== undefined ? this.long0 : 0;
this.lat0 = this.lat0 !== undefined ? this.lat0 : 0;
this.cgb = [];
this.cbg = [];
this.utg = [];
this.gtu = [];
var f = this.es / (1 + Math.sqrt(1 - this.es));
var n = f / (2 - f);
var np = n;
this.cgb[0] = n * (2 + n * (-2 / 3 + n * (-2 + n * (116 / 45 + n * (26 / 45 + n * (-2854 / 675 ))))));
this.cbg[0] = n * (-2 + n * ( 2 / 3 + n * ( 4 / 3 + n * (-82 / 45 + n * (32 / 45 + n * (4642 / 4725))))));
np = np * n;
this.cgb[1] = np * (7 / 3 + n * (-8 / 5 + n * (-227 / 45 + n * (2704 / 315 + n * (2323 / 945)))));
this.cbg[1] = np * (5 / 3 + n * (-16 / 15 + n * ( -13 / 9 + n * (904 / 315 + n * (-1522 / 945)))));
np = np * n;
this.cgb[2] = np * (56 / 15 + n * (-136 / 35 + n * (-1262 / 105 + n * (73814 / 2835))));
this.cbg[2] = np * (-26 / 15 + n * (34 / 21 + n * (8 / 5 + n * (-12686 / 2835))));
np = np * n;
this.cgb[3] = np * (4279 / 630 + n * (-332 / 35 + n * (-399572 / 14175)));
this.cbg[3] = np * (1237 / 630 + n * (-12 / 5 + n * ( -24832 / 14175)));
np = np * n;
this.cgb[4] = np * (4174 / 315 + n * (-144838 / 6237));
this.cbg[4] = np * (-734 / 315 + n * (109598 / 31185));
np = np * n;
this.cgb[5] = np * (601676 / 22275);
this.cbg[5] = np * (444337 / 155925);
np = Math.pow(n, 2);
this.Qn = this.k0 / (1 + n) * (1 + np * (1 / 4 + np * (1 / 64 + np / 256)));
this.utg[0] = n * (-0.5 + n * ( 2 / 3 + n * (-37 / 96 + n * ( 1 / 360 + n * (81 / 512 + n * (-96199 / 604800))))));
this.gtu[0] = n * (0.5 + n * (-2 / 3 + n * (5 / 16 + n * (41 / 180 + n * (-127 / 288 + n * (7891 / 37800))))));
this.utg[1] = np * (-1 / 48 + n * (-1 / 15 + n * (437 / 1440 + n * (-46 / 105 + n * (1118711 / 3870720)))));
this.gtu[1] = np * (13 / 48 + n * (-3 / 5 + n * (557 / 1440 + n * (281 / 630 + n * (-1983433 / 1935360)))));
np = np * n;
this.utg[2] = np * (-17 / 480 + n * (37 / 840 + n * (209 / 4480 + n * (-5569 / 90720 ))));
this.gtu[2] = np * (61 / 240 + n * (-103 / 140 + n * (15061 / 26880 + n * (167603 / 181440))));
np = np * n;
this.utg[3] = np * (-4397 / 161280 + n * (11 / 504 + n * (830251 / 7257600)));
this.gtu[3] = np * (49561 / 161280 + n * (-179 / 168 + n * (6601661 / 7257600)));
np = np * n;
this.utg[4] = np * (-4583 / 161280 + n * (108847 / 3991680));
this.gtu[4] = np * (34729 / 80640 + n * (-3418889 / 1995840));
np = np * n;
this.utg[5] = np * (-20648693 / 638668800);
this.gtu[5] = np * (212378941 / 319334400);
var Z = gatg(this.cbg, this.lat0);
this.Zb = -this.Qn * (Z + clens(this.gtu, 2 * Z));
}
function forward$s(p) {
var Ce = adjust_lon(p.x - this.long0);
var Cn = p.y;
Cn = gatg(this.cbg, Cn);
var sin_Cn = Math.sin(Cn);
var cos_Cn = Math.cos(Cn);
var sin_Ce = Math.sin(Ce);
var cos_Ce = Math.cos(Ce);
Cn = Math.atan2(sin_Cn, cos_Ce * cos_Cn);
Ce = Math.atan2(sin_Ce * cos_Cn, hypot(sin_Cn, cos_Cn * cos_Ce));
Ce = asinhy(Math.tan(Ce));
var tmp = clens_cmplx(this.gtu, 2 * Cn, 2 * Ce);
Cn = Cn + tmp[0];
Ce = Ce + tmp[1];
var x;
var y;
if (Math.abs(Ce) <= 2.623395162778) {
x = this.a * (this.Qn * Ce) + this.x0;
y = this.a * (this.Qn * Cn + this.Zb) + this.y0;
}
else {
x = Infinity;
y = Infinity;
}
p.x = x;
p.y = y;
return p;
}
function inverse$s(p) {
var Ce = (p.x - this.x0) * (1 / this.a);
var Cn = (p.y - this.y0) * (1 / this.a);
Cn = (Cn - this.Zb) / this.Qn;
Ce = Ce / this.Qn;
var lon;
var lat;
if (Math.abs(Ce) <= 2.623395162778) {
var tmp = clens_cmplx(this.utg, 2 * Cn, 2 * Ce);
Cn = Cn + tmp[0];
Ce = Ce + tmp[1];
Ce = Math.atan(sinh(Ce));
var sin_Cn = Math.sin(Cn);
var cos_Cn = Math.cos(Cn);
var sin_Ce = Math.sin(Ce);
var cos_Ce = Math.cos(Ce);
Cn = Math.atan2(sin_Cn * cos_Ce, hypot(sin_Ce, cos_Ce * cos_Cn));
Ce = Math.atan2(sin_Ce, cos_Ce * cos_Cn);
lon = adjust_lon(Ce + this.long0);
lat = gatg(this.cgb, Cn);
}
else {
lon = Infinity;
lat = Infinity;
}
p.x = lon;
p.y = lat;
return p;
}
var names$t = ["Extended_Transverse_Mercator", "Extended Transverse Mercator", "etmerc", "Transverse_Mercator", "Transverse Mercator", "Gauss Kruger", "Gauss_Kruger", "tmerc"];
var etmerc = {
init: init$u,
forward: forward$s,
inverse: inverse$s,
names: names$t
};
function adjust_zone(zone, lon) {
if (zone === undefined) {
zone = Math.floor((adjust_lon(lon) + Math.PI) * 30 / Math.PI) + 1;
if (zone < 0) {
return 0;
} else if (zone > 60) {
return 60;
}
}
return zone;
}
var dependsOn = 'etmerc';
function init$t() {
var zone = adjust_zone(this.zone, this.long0);
if (zone === undefined) {
throw new Error('unknown utm zone');
}
this.lat0 = 0;
this.long0 = ((6 * Math.abs(zone)) - 183) * D2R$1;
this.x0 = 500000;
this.y0 = this.utmSouth ? 10000000 : 0;
this.k0 = 0.9996;
etmerc.init.apply(this);
this.forward = etmerc.forward;
this.inverse = etmerc.inverse;
}
var names$s = ["Universal Transverse Mercator System", "utm"];
var utm = {
init: init$t,
names: names$s,
dependsOn: dependsOn
};
function srat(esinp, exp) {
return (Math.pow((1 - esinp) / (1 + esinp), exp));
}
var MAX_ITER$2 = 20;
function init$s() {
var sphi = Math.sin(this.lat0);
var cphi = Math.cos(this.lat0);
cphi *= cphi;
this.rc = Math.sqrt(1 - this.es) / (1 - this.es * sphi * sphi);
this.C = Math.sqrt(1 + this.es * cphi * cphi / (1 - this.es));
this.phic0 = Math.asin(sphi / this.C);
this.ratexp = 0.5 * this.C * this.e;
this.K = Math.tan(0.5 * this.phic0 + FORTPI) / (Math.pow(Math.tan(0.5 * this.lat0 + FORTPI), this.C) * srat(this.e * sphi, this.ratexp));
}
function forward$r(p) {
var lon = p.x;
var lat = p.y;
p.y = 2 * Math.atan(this.K * Math.pow(Math.tan(0.5 * lat + FORTPI), this.C) * srat(this.e * Math.sin(lat), this.ratexp)) - HALF_PI;
p.x = this.C * lon;
return p;
}
function inverse$r(p) {
var DEL_TOL = 1e-14;
var lon = p.x / this.C;
var lat = p.y;
var num = Math.pow(Math.tan(0.5 * lat + FORTPI) / this.K, 1 / this.C);
for (var i = MAX_ITER$2; i > 0; --i) {
lat = 2 * Math.atan(num * srat(this.e * Math.sin(p.y), -0.5 * this.e)) - HALF_PI;
if (Math.abs(lat - p.y) < DEL_TOL) {
break;
}
p.y = lat;
}
/* convergence failed */
if (!i) {
return null;
}
p.x = lon;
p.y = lat;
return p;
}
var gauss = {
init: init$s,
forward: forward$r,
inverse: inverse$r};
function init$r() {
gauss.init.apply(this);
if (!this.rc) {
return;
}
this.sinc0 = Math.sin(this.phic0);
this.cosc0 = Math.cos(this.phic0);
this.R2 = 2 * this.rc;
if (!this.title) {
this.title = "Oblique Stereographic Alternative";
}
}
function forward$q(p) {
var sinc, cosc, cosl, k;
p.x = adjust_lon(p.x - this.long0);
gauss.forward.apply(this, [p]);
sinc = Math.sin(p.y);
cosc = Math.cos(p.y);
cosl = Math.cos(p.x);
k = this.k0 * this.R2 / (1 + this.sinc0 * sinc + this.cosc0 * cosc * cosl);
p.x = k * cosc * Math.sin(p.x);
p.y = k * (this.cosc0 * sinc - this.sinc0 * cosc * cosl);
p.x = this.a * p.x + this.x0;
p.y = this.a * p.y + this.y0;
return p;
}
function inverse$q(p) {
var sinc, cosc, lon, lat, rho;
p.x = (p.x - this.x0) / this.a;
p.y = (p.y - this.y0) / this.a;
p.x /= this.k0;
p.y /= this.k0;
if ((rho = hypot(p.x, p.y))) {
var c = 2 * Math.atan2(rho, this.R2);
sinc = Math.sin(c);
cosc = Math.cos(c);
lat = Math.asin(cosc * this.sinc0 + p.y * sinc * this.cosc0 / rho);
lon = Math.atan2(p.x * sinc, rho * this.cosc0 * cosc - p.y * this.sinc0 * sinc);
}
else {
lat = this.phic0;
lon = 0;
}
p.x = lon;
p.y = lat;
gauss.inverse.apply(this, [p]);
p.x = adjust_lon(p.x + this.long0);
return p;
}
var names$r = ["Stereographic_North_Pole", "Oblique_Stereographic", "sterea","Oblique Stereographic Alternative","Double_Stereographic"];
var sterea = {
init: init$r,
forward: forward$q,
inverse: inverse$q,
names: names$r
};
function ssfn_(phit, sinphi, eccen) {
sinphi *= eccen;
return (Math.tan(0.5 * (HALF_PI + phit)) * Math.pow((1 - sinphi) / (1 + sinphi), 0.5 * eccen));
}
function init$q() {
// setting default parameters
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
this.lat0 = this.lat0 || 0;
this.long0 = this.long0 || 0;
this.coslat0 = Math.cos(this.lat0);
this.sinlat0 = Math.sin(this.lat0);
if (this.sphere) {
if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
this.k0 = 0.5 * (1 + sign(this.lat0) * Math.sin(this.lat_ts));
}
}
else {
if (Math.abs(this.coslat0) <= EPSLN) {
if (this.lat0 > 0) {
//North pole
//trace('stere:north pole');
this.con = 1;
}
else {
//South pole
//trace('stere:south pole');
this.con = -1;
}
}
this.cons = Math.sqrt(Math.pow(1 + this.e, 1 + this.e) * Math.pow(1 - this.e, 1 - this.e));
if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN && Math.abs(Math.cos(this.lat_ts)) > EPSLN) {
// When k0 is 1 (default value) and lat_ts is a vaild number and lat0 is at a pole and lat_ts is not at a pole
// Recalculate k0 using formula 21-35 from p161 of Snyder, 1987
this.k0 = 0.5 * this.cons * msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) / tsfnz(this.e, this.con * this.lat_ts, this.con * Math.sin(this.lat_ts));
}
this.ms1 = msfnz(this.e, this.sinlat0, this.coslat0);
this.X0 = 2 * Math.atan(this.ssfn_(this.lat0, this.sinlat0, this.e)) - HALF_PI;
this.cosX0 = Math.cos(this.X0);
this.sinX0 = Math.sin(this.X0);
}
}
// Stereographic forward equations--mapping lat,long to x,y
function forward$p(p) {
var lon = p.x;
var lat = p.y;
var sinlat = Math.sin(lat);
var coslat = Math.cos(lat);
var A, X, sinX, cosX, ts, rh;
var dlon = adjust_lon(lon - this.long0);
if (Math.abs(Math.abs(lon - this.long0) - Math.PI) <= EPSLN && Math.abs(lat + this.lat0) <= EPSLN) {
//case of the origine point
//trace('stere:this is the origin point');
p.x = NaN;
p.y = NaN;
return p;
}
if (this.sphere) {
//trace('stere:sphere case');
A = 2 * this.k0 / (1 + this.sinlat0 * sinlat + this.coslat0 * coslat * Math.cos(dlon));
p.x = this.a * A * coslat * Math.sin(dlon) + this.x0;
p.y = this.a * A * (this.coslat0 * sinlat - this.sinlat0 * coslat * Math.cos(dlon)) + this.y0;
return p;
}
else {
X = 2 * Math.atan(this.ssfn_(lat, sinlat, this.e)) - HALF_PI;
cosX = Math.cos(X);
sinX = Math.sin(X);
if (Math.abs(this.coslat0) <= EPSLN) {
ts = tsfnz(this.e, lat * this.con, this.con * sinlat);
rh = 2 * this.a * this.k0 * ts / this.cons;
p.x = this.x0 + rh * Math.sin(lon - this.long0);
p.y = this.y0 - this.con * rh * Math.cos(lon - this.long0);
//trace(p.toString());
return p;
}
else if (Math.abs(this.sinlat0) < EPSLN) {
//Eq
//trace('stere:equateur');
A = 2 * this.a * this.k0 / (1 + cosX * Math.cos(dlon));
p.y = A * sinX;
}
else {
//other case
//trace('stere:normal case');
A = 2 * this.a * this.k0 * this.ms1 / (this.cosX0 * (1 + this.sinX0 * sinX + this.cosX0 * cosX * Math.cos(dlon)));
p.y = A * (this.cosX0 * sinX - this.sinX0 * cosX * Math.cos(dlon)) + this.y0;
}
p.x = A * cosX * Math.sin(dlon) + this.x0;
}
//trace(p.toString());
return p;
}
//* Stereographic inverse equations--mapping x,y to lat/long
function inverse$p(p) {
p.x -= this.x0;
p.y -= this.y0;
var lon, lat, ts, ce, Chi;
var rh = Math.sqrt(p.x * p.x + p.y * p.y);
if (this.sphere) {
var c = 2 * Math.atan(rh / (2 * this.a * this.k0));
lon = this.long0;
lat = this.lat0;
if (rh <= EPSLN) {
p.x = lon;
p.y = lat;
return p;
}
lat = Math.asin(Math.cos(c) * this.sinlat0 + p.y * Math.sin(c) * this.coslat0 / rh);
if (Math.abs(this.coslat0) < EPSLN) {
if (this.lat0 > 0) {
lon = adjust_lon(this.long0 + Math.atan2(p.x, -1 * p.y));
}
else {
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
}
}
else {
lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(c), rh * this.coslat0 * Math.cos(c) - p.y * this.sinlat0 * Math.sin(c)));
}
p.x = lon;
p.y = lat;
return p;
}
else {
if (Math.abs(this.coslat0) <= EPSLN) {
if (rh <= EPSLN) {
lat = this.lat0;
lon = this.long0;
p.x = lon;
p.y = lat;
//trace(p.toString());
return p;
}
p.x *= this.con;
p.y *= this.con;
ts = rh * this.cons / (2 * this.a * this.k0);
lat = this.con * phi2z(this.e, ts);
lon = this.con * adjust_lon(this.con * this.long0 + Math.atan2(p.x, -1 * p.y));
}
else {
ce = 2 * Math.atan(rh * this.cosX0 / (2 * this.a * this.k0 * this.ms1));
lon = this.long0;
if (rh <= EPSLN) {
Chi = this.X0;
}
else {
Chi = Math.asin(Math.cos(ce) * this.sinX0 + p.y * Math.sin(ce) * this.cosX0 / rh);
lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(ce), rh * this.cosX0 * Math.cos(ce) - p.y * this.sinX0 * Math.sin(ce)));
}
lat = -1 * phi2z(this.e, Math.tan(0.5 * (HALF_PI + Chi)));
}
}
p.x = lon;
p.y = lat;
//trace(p.toString());
return p;
}
var names$q = ["stere", "Stereographic_South_Pole", "Polar Stereographic (variant B)", "Polar_Stereographic"];
var stere = {
init: init$q,
forward: forward$p,
inverse: inverse$p,
names: names$q,
ssfn_: ssfn_
};
/*
references:
Formules et constantes pour le Calcul pour la
projection cylindrique conforme à axe oblique et pour la transformation entre
des systèmes de référence.
http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
*/
function init$p() {
var phy0 = this.lat0;
this.lambda0 = this.long0;
var sinPhy0 = Math.sin(phy0);
var semiMajorAxis = this.a;
var invF = this.rf;
var flattening = 1 / invF;
var e2 = 2 * flattening - Math.pow(flattening, 2);
var e = this.e = Math.sqrt(e2);
this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2));
this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4));
this.b0 = Math.asin(sinPhy0 / this.alpha);
var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2));
var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2));
var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0));
this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3;
}
function forward$o(p) {
var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2));
var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y)));
var S = -this.alpha * (Sa1 + Sa2) + this.K;
// spheric latitude
var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4);
// spheric longitude
var I = this.alpha * (p.x - this.lambda0);
// psoeudo equatorial rotation
var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I)));
var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I));
p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0;
p.x = this.R * rotI + this.x0;
return p;
}
function inverse$o(p) {
var Y = p.x - this.x0;
var X = p.y - this.y0;
var rotI = Y / this.R;
var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4);
var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI));
var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB)));
var lambda = this.lambda0 + I / this.alpha;
var S = 0;
var phy = b;
var prevPhy = -1e3;
var iteration = 0;
while (Math.abs(phy - prevPhy) > 0.0000001) {
if (++iteration > 20) {
//...reportError("omercFwdInfinity");
return;
}
//S = Math.log(Math.tan(Math.PI / 4 + phy / 2));
S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2));
prevPhy = phy;
phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2;
}
p.x = lambda;
p.y = phy;
return p;
}
var names$p = ["somerc"];
var somerc = {
init: init$p,
forward: forward$o,
inverse: inverse$o,
names: names$p
};
var TOL = 1e-7;
function isTypeA(P) {
var typeAProjections = ['Hotine_Oblique_Mercator','Hotine_Oblique_Mercator_Azimuth_Natural_Origin'];
var projectionName = typeof P.PROJECTION === "object" ? Object.keys(P.PROJECTION)[0] : P.PROJECTION;
return 'no_uoff' in P || 'no_off' in P || typeAProjections.indexOf(projectionName) !== -1;
}
/* Initialize the Oblique Mercator projection
------------------------------------------*/
function init$o() {
var con, com, cosph0, D, F, H, L, sinph0, p, J, gamma = 0,
gamma0, lamc = 0, lam1 = 0, lam2 = 0, phi1 = 0, phi2 = 0, alpha_c = 0;
// only Type A uses the no_off or no_uoff property
// https://github.com/OSGeo/proj.4/issues/104
this.no_off = isTypeA(this);
this.no_rot = 'no_rot' in this;
var alp = false;
if ("alpha" in this) {
alp = true;
}
var gam = false;
if ("rectified_grid_angle" in this) {
gam = true;
}
if (alp) {
alpha_c = this.alpha;
}
if (gam) {
gamma = (this.rectified_grid_angle * D2R$1);
}
if (alp || gam) {
lamc = this.longc;
} else {
lam1 = this.long1;
phi1 = this.lat1;
lam2 = this.long2;
phi2 = this.lat2;
if (Math.abs(phi1 - phi2) <= TOL || (con = Math.abs(phi1)) <= TOL ||
Math.abs(con - HALF_PI) <= TOL || Math.abs(Math.abs(this.lat0) - HALF_PI) <= TOL ||
Math.abs(Math.abs(phi2) - HALF_PI) <= TOL) {
throw new Error();
}
}
var one_es = 1.0 - this.es;
com = Math.sqrt(one_es);
if (Math.abs(this.lat0) > EPSLN) {
sinph0 = Math.sin(this.lat0);
cosph0 = Math.cos(this.lat0);
con = 1 - this.es * sinph0 * sinph0;
this.B = cosph0 * cosph0;
this.B = Math.sqrt(1 + this.es * this.B * this.B / one_es);
this.A = this.B * this.k0 * com / con;
D = this.B * com / (cosph0 * Math.sqrt(con));
F = D * D -1;
if (F <= 0) {
F = 0;
} else {
F = Math.sqrt(F);
if (this.lat0 < 0) {
F = -F;
}
}
this.E = F += D;
this.E *= Math.pow(tsfnz(this.e, this.lat0, sinph0), this.B);
} else {
this.B = 1 / com;
this.A = this.k0;
this.E = D = F = 1;
}
if (alp || gam) {
if (alp) {
gamma0 = Math.asin(Math.sin(alpha_c) / D);
if (!gam) {
gamma = alpha_c;
}
} else {
gamma0 = gamma;
alpha_c = Math.asin(D * Math.sin(gamma0));
}
this.lam0 = lamc - Math.asin(0.5 * (F - 1 / F) * Math.tan(gamma0)) / this.B;
} else {
H = Math.pow(tsfnz(this.e, phi1, Math.sin(phi1)), this.B);
L = Math.pow(tsfnz(this.e, phi2, Math.sin(phi2)), this.B);
F = this.E / H;
p = (L - H) / (L + H);
J = this.E * this.E;
J = (J - L * H) / (J + L * H);
con = lam1 - lam2;
if (con < -Math.pi) {
lam2 -=TWO_PI;
} else if (con > Math.pi) {
lam2 += TWO_PI;
}
this.lam0 = adjust_lon(0.5 * (lam1 + lam2) - Math.atan(J * Math.tan(0.5 * this.B * (lam1 - lam2)) / p) / this.B);
gamma0 = Math.atan(2 * Math.sin(this.B * adjust_lon(lam1 - this.lam0)) / (F - 1 / F));
gamma = alpha_c = Math.asin(D * Math.sin(gamma0));
}
this.singam = Math.sin(gamma0);
this.cosgam = Math.cos(gamma0);
this.sinrot = Math.sin(gamma);
this.cosrot = Math.cos(gamma);
this.rB = 1 / this.B;
this.ArB = this.A * this.rB;
this.BrA = 1 / this.ArB;
this.A * this.B;
if (this.no_off) {
this.u_0 = 0;
} else {
this.u_0 = Math.abs(this.ArB * Math.atan(Math.sqrt(D * D - 1) / Math.cos(alpha_c)));
if (this.lat0 < 0) {
this.u_0 = - this.u_0;
}
}
F = 0.5 * gamma0;
this.v_pole_n = this.ArB * Math.log(Math.tan(FORTPI - F));
this.v_pole_s = this.ArB * Math.log(Math.tan(FORTPI + F));
}
/* Oblique Mercator forward equations--mapping lat,long to x,y
----------------------------------------------------------*/
function forward$n(p) {
var coords = {};
var S, T, U, V, W, temp, u, v;
p.x = p.x - this.lam0;
if (Math.abs(Math.abs(p.y) - HALF_PI) > EPSLN) {
W = this.E / Math.pow(tsfnz(this.e, p.y, Math.sin(p.y)), this.B);
temp = 1 / W;
S = 0.5 * (W - temp);
T = 0.5 * (W + temp);
V = Math.sin(this.B * p.x);
U = (S * this.singam - V * this.cosgam) / T;
if (Math.abs(Math.abs(U) - 1.0) < EPSLN) {
throw new Error();
}
v = 0.5 * this.ArB * Math.log((1 - U)/(1 + U));
temp = Math.cos(this.B * p.x);
if (Math.abs(temp) < TOL) {
u = this.A * p.x;
} else {
u = this.ArB * Math.atan2((S * this.cosgam + V * this.singam), temp);
}
} else {
v = p.y > 0 ? this.v_pole_n : this.v_pole_s;
u = this.ArB * p.y;
}
if (this.no_rot) {
coords.x = u;
coords.y = v;
} else {
u -= this.u_0;
coords.x = v * this.cosrot + u * this.sinrot;
coords.y = u * this.cosrot - v * this.sinrot;
}
coords.x = (this.a * coords.x + this.x0);
coords.y = (this.a * coords.y + this.y0);
return coords;
}
function inverse$n(p) {
var u, v, Qp, Sp, Tp, Vp, Up;
var coords = {};
p.x = (p.x - this.x0) * (1.0 / this.a);
p.y = (p.y - this.y0) * (1.0 / this.a);
if (this.no_rot) {
v = p.y;
u = p.x;
} else {
v = p.x * this.cosrot - p.y * this.sinrot;
u = p.y * this.cosrot + p.x * this.sinrot + this.u_0;
}
Qp = Math.exp(-this.BrA * v);
Sp = 0.5 * (Qp - 1 / Qp);
Tp = 0.5 * (Qp + 1 / Qp);
Vp = Math.sin(this.BrA * u);
Up = (Vp * this.cosgam + Sp * this.singam) / Tp;
if (Math.abs(Math.abs(Up) - 1) < EPSLN) {
coords.x = 0;
coords.y = Up < 0 ? -HALF_PI : HALF_PI;
} else {
coords.y = this.E / Math.sqrt((1 + Up) / (1 - Up));
coords.y = phi2z(this.e, Math.pow(coords.y, 1 / this.B));
if (coords.y === Infinity) {
throw new Error();
}
coords.x = -this.rB * Math.atan2((Sp * this.cosgam - Vp * this.singam), Math.cos(this.BrA * u));
}
coords.x += this.lam0;
return coords;
}
var names$o = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Two_Point_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "Oblique_Mercator", "omerc"];
var omerc = {
init: init$o,
forward: forward$n,
inverse: inverse$n,
names: names$o
};
function init$n() {
//double lat0; /* the reference latitude */
//double long0; /* the reference longitude */
//double lat1; /* first standard parallel */
//double lat2; /* second standard parallel */
//double r_maj; /* major axis */
//double r_min; /* minor axis */
//double false_east; /* x offset in meters */
//double false_north; /* y offset in meters */
//the above value can be set with proj4.defs
//example: proj4.defs("EPSG:2154","+proj=lcc +lat_1=49 +lat_2=44 +lat_0=46.5 +lon_0=3 +x_0=700000 +y_0=6600000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs");
if (!this.lat2) {
this.lat2 = this.lat1;
} //if lat2 is not defined
if (!this.k0) {
this.k0 = 1;
}
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
// Standard Parallels cannot be equal and on opposite sides of the equator
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
return;
}
var temp = this.b / this.a;
this.e = Math.sqrt(1 - temp * temp);
var sin1 = Math.sin(this.lat1);
var cos1 = Math.cos(this.lat1);
var ms1 = msfnz(this.e, sin1, cos1);
var ts1 = tsfnz(this.e, this.lat1, sin1);
var sin2 = Math.sin(this.lat2);
var cos2 = Math.cos(this.lat2);
var ms2 = msfnz(this.e, sin2, cos2);
var ts2 = tsfnz(this.e, this.lat2, sin2);
var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0));
if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2);
}
else {
this.ns = sin1;
}
if (isNaN(this.ns)) {
this.ns = sin1;
}
this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns));
this.rh = this.a * this.f0 * Math.pow(ts0, this.ns);
if (!this.title) {
this.title = "Lambert Conformal Conic";
}
}
// Lambert Conformal conic forward equations--mapping lat,long to x,y
// -----------------------------------------------------------------
function forward$m(p) {
var lon = p.x;
var lat = p.y;
// singular cases :
if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) {
lat = sign(lat) * (HALF_PI - 2 * EPSLN);
}
var con = Math.abs(Math.abs(lat) - HALF_PI);
var ts, rh1;
if (con > EPSLN) {
ts = tsfnz(this.e, lat, Math.sin(lat));
rh1 = this.a * this.f0 * Math.pow(ts, this.ns);
}
else {
con = lat * this.ns;
if (con <= 0) {
return null;
}
rh1 = 0;
}
var theta = this.ns * adjust_lon(lon - this.long0);
p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0;
p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0;
return p;
}
// Lambert Conformal Conic inverse equations--mapping x,y to lat/long
// -----------------------------------------------------------------
function inverse$m(p) {
var rh1, con, ts;
var lat, lon;
var x = (p.x - this.x0) / this.k0;
var y = (this.rh - (p.y - this.y0) / this.k0);
if (this.ns > 0) {
rh1 = Math.sqrt(x * x + y * y);
con = 1;
}
else {
rh1 = -Math.sqrt(x * x + y * y);
con = -1;
}
var theta = 0;
if (rh1 !== 0) {
theta = Math.atan2((con * x), (con * y));
}
if ((rh1 !== 0) || (this.ns > 0)) {
con = 1 / this.ns;
ts = Math.pow((rh1 / (this.a * this.f0)), con);
lat = phi2z(this.e, ts);
if (lat === -9999) {
return null;
}
}
else {
lat = -HALF_PI;
}
lon = adjust_lon(theta / this.ns + this.long0);
p.x = lon;
p.y = lat;
return p;
}
var names$n = [
"Lambert Tangential Conformal Conic Projection",
"Lambert_Conformal_Conic",
"Lambert_Conformal_Conic_1SP",
"Lambert_Conformal_Conic_2SP",
"lcc",
"Lambert Conic Conformal (1SP)",
"Lambert Conic Conformal (2SP)"
];
var lcc = {
init: init$n,
forward: forward$m,
inverse: inverse$m,
names: names$n
};
function init$m() {
this.a = 6377397.155;
this.es = 0.006674372230614;
this.e = Math.sqrt(this.es);
if (!this.lat0) {
this.lat0 = 0.863937979737193;
}
if (!this.long0) {
this.long0 = 0.7417649320975901 - 0.308341501185665;
}
/* if scale not set default to 0.9999 */
if (!this.k0) {
this.k0 = 0.9999;
}
this.s45 = 0.785398163397448; /* 45 */
this.s90 = 2 * this.s45;
this.fi0 = this.lat0;
this.e2 = this.es;
this.e = Math.sqrt(this.e2);
this.alfa = Math.sqrt(1 + (this.e2 * Math.pow(Math.cos(this.fi0), 4)) / (1 - this.e2));
this.uq = 1.04216856380474;
this.u0 = Math.asin(Math.sin(this.fi0) / this.alfa);
this.g = Math.pow((1 + this.e * Math.sin(this.fi0)) / (1 - this.e * Math.sin(this.fi0)), this.alfa * this.e / 2);
this.k = Math.tan(this.u0 / 2 + this.s45) / Math.pow(Math.tan(this.fi0 / 2 + this.s45), this.alfa) * this.g;
this.k1 = this.k0;
this.n0 = this.a * Math.sqrt(1 - this.e2) / (1 - this.e2 * Math.pow(Math.sin(this.fi0), 2));
this.s0 = 1.37008346281555;
this.n = Math.sin(this.s0);
this.ro0 = this.k1 * this.n0 / Math.tan(this.s0);
this.ad = this.s90 - this.uq;
}
/* ellipsoid */
/* calculate xy from lat/lon */
/* Constants, identical to inverse transform function */
function forward$l(p) {
var gfi, u, deltav, s, d, eps, ro;
var lon = p.x;
var lat = p.y;
var delta_lon = adjust_lon(lon - this.long0);
/* Transformation */
gfi = Math.pow(((1 + this.e * Math.sin(lat)) / (1 - this.e * Math.sin(lat))), (this.alfa * this.e / 2));
u = 2 * (Math.atan(this.k * Math.pow(Math.tan(lat / 2 + this.s45), this.alfa) / gfi) - this.s45);
deltav = -delta_lon * this.alfa;
s = Math.asin(Math.cos(this.ad) * Math.sin(u) + Math.sin(this.ad) * Math.cos(u) * Math.cos(deltav));
d = Math.asin(Math.cos(u) * Math.sin(deltav) / Math.cos(s));
eps = this.n * d;
ro = this.ro0 * Math.pow(Math.tan(this.s0 / 2 + this.s45), this.n) / Math.pow(Math.tan(s / 2 + this.s45), this.n);
p.y = ro * Math.cos(eps) / 1;
p.x = ro * Math.sin(eps) / 1;
if (!this.czech) {
p.y *= -1;
p.x *= -1;
}
return (p);
}
/* calculate lat/lon from xy */
function inverse$l(p) {
var u, deltav, s, d, eps, ro, fi1;
var ok;
/* Transformation */
/* revert y, x*/
var tmp = p.x;
p.x = p.y;
p.y = tmp;
if (!this.czech) {
p.y *= -1;
p.x *= -1;
}
ro = Math.sqrt(p.x * p.x + p.y * p.y);
eps = Math.atan2(p.y, p.x);
d = eps / Math.sin(this.s0);
s = 2 * (Math.atan(Math.pow(this.ro0 / ro, 1 / this.n) * Math.tan(this.s0 / 2 + this.s45)) - this.s45);
u = Math.asin(Math.cos(this.ad) * Math.sin(s) - Math.sin(this.ad) * Math.cos(s) * Math.cos(d));
deltav = Math.asin(Math.cos(s) * Math.sin(d) / Math.cos(u));
p.x = this.long0 - deltav / this.alfa;
fi1 = u;
ok = 0;
var iter = 0;
do {
p.y = 2 * (Math.atan(Math.pow(this.k, -1 / this.alfa) * Math.pow(Math.tan(u / 2 + this.s45), 1 / this.alfa) * Math.pow((1 + this.e * Math.sin(fi1)) / (1 - this.e * Math.sin(fi1)), this.e / 2)) - this.s45);
if (Math.abs(fi1 - p.y) < 0.0000000001) {
ok = 1;
}
fi1 = p.y;
iter += 1;
} while (ok === 0 && iter < 15);
if (iter >= 15) {
return null;
}
return (p);
}
var names$m = ["Krovak", "krovak"];
var krovak = {
init: init$m,
forward: forward$l,
inverse: inverse$l,
names: names$m
};
function mlfn(e0, e1, e2, e3, phi) {
return (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi));
}
function e0fn(x) {
return (1 - 0.25 * x * (1 + x / 16 * (3 + 1.25 * x)));
}
function e1fn(x) {
return (0.375 * x * (1 + 0.25 * x * (1 + 0.46875 * x)));
}
function e2fn(x) {
return (0.05859375 * x * x * (1 + 0.75 * x));
}
function e3fn(x) {
return (x * x * x * (35 / 3072));
}
function gN(a, e, sinphi) {
var temp = e * sinphi;
return a / Math.sqrt(1 - temp * temp);
}
function adjust_lat(x) {
return (Math.abs(x) < HALF_PI) ? x : (x - (sign(x) * Math.PI));
}
function imlfn(ml, e0, e1, e2, e3) {
var phi;
var dphi;
phi = ml / e0;
for (var i = 0; i < 15; i++) {
dphi = (ml - (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi))) / (e0 - 2 * e1 * Math.cos(2 * phi) + 4 * e2 * Math.cos(4 * phi) - 6 * e3 * Math.cos(6 * phi));
phi += dphi;
if (Math.abs(dphi) <= 0.0000000001) {
return phi;
}
}
//..reportError("IMLFN-CONV:Latitude failed to converge after 15 iterations");
return NaN;
}
function init$l() {
if (!this.sphere) {
this.e0 = e0fn(this.es);
this.e1 = e1fn(this.es);
this.e2 = e2fn(this.es);
this.e3 = e3fn(this.es);
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
}
}
/* Cassini forward equations--mapping lat,long to x,y
-----------------------------------------------------------------------*/
function forward$k(p) {
/* Forward equations
-----------------*/
var x, y;
var lam = p.x;
var phi = p.y;
lam = adjust_lon(lam - this.long0);
if (this.sphere) {
x = this.a * Math.asin(Math.cos(phi) * Math.sin(lam));
y = this.a * (Math.atan2(Math.tan(phi), Math.cos(lam)) - this.lat0);
}
else {
//ellipsoid
var sinphi = Math.sin(phi);
var cosphi = Math.cos(phi);
var nl = gN(this.a, this.e, sinphi);
var tl = Math.tan(phi) * Math.tan(phi);
var al = lam * Math.cos(phi);
var asq = al * al;
var cl = this.es * cosphi * cosphi / (1 - this.es);
var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
x = nl * al * (1 - asq * tl * (1 / 6 - (8 - tl + 8 * cl) * asq / 120));
y = ml - this.ml0 + nl * sinphi / cosphi * asq * (0.5 + (5 - tl + 6 * cl) * asq / 24);
}
p.x = x + this.x0;
p.y = y + this.y0;
return p;
}
/* Inverse equations
-----------------*/
function inverse$k(p) {
p.x -= this.x0;
p.y -= this.y0;
var x = p.x / this.a;
var y = p.y / this.a;
var phi, lam;
if (this.sphere) {
var dd = y + this.lat0;
phi = Math.asin(Math.sin(dd) * Math.cos(x));
lam = Math.atan2(Math.tan(x), Math.cos(dd));
}
else {
/* ellipsoid */
var ml1 = this.ml0 / this.a + y;
var phi1 = imlfn(ml1, this.e0, this.e1, this.e2, this.e3);
if (Math.abs(Math.abs(phi1) - HALF_PI) <= EPSLN) {
p.x = this.long0;
p.y = HALF_PI;
if (y < 0) {
p.y *= -1;
}
return p;
}
var nl1 = gN(this.a, this.e, Math.sin(phi1));
var rl1 = nl1 * nl1 * nl1 / this.a / this.a * (1 - this.es);
var tl1 = Math.pow(Math.tan(phi1), 2);
var dl = x * this.a / nl1;
var dsq = dl * dl;
phi = phi1 - nl1 * Math.tan(phi1) / rl1 * dl * dl * (0.5 - (1 + 3 * tl1) * dl * dl / 24);
lam = dl * (1 - dsq * (tl1 / 3 + (1 + 3 * tl1) * tl1 * dsq / 15)) / Math.cos(phi1);
}
p.x = adjust_lon(lam + this.long0);
p.y = adjust_lat(phi);
return p;
}
var names$l = ["Cassini", "Cassini_Soldner", "cass"];
var cass = {
init: init$l,
forward: forward$k,
inverse: inverse$k,
names: names$l
};
function qsfnz(eccent, sinphi) {
var con;
if (eccent > 1.0e-7) {
con = eccent * sinphi;
return ((1 - eccent * eccent) * (sinphi / (1 - con * con) - (0.5 / eccent) * Math.log((1 - con) / (1 + con))));
}
else {
return (2 * sinphi);
}
}
/*
reference
"New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
*/
var S_POLE = 1;
var N_POLE = 2;
var EQUIT = 3;
var OBLIQ = 4;
/* Initialize the Lambert Azimuthal Equal Area projection
------------------------------------------------------*/
function init$k() {
var t = Math.abs(this.lat0);
if (Math.abs(t - HALF_PI) < EPSLN) {
this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE;
}
else if (Math.abs(t) < EPSLN) {
this.mode = this.EQUIT;
}
else {
this.mode = this.OBLIQ;
}
if (this.es > 0) {
var sinphi;
this.qp = qsfnz(this.e, 1);
this.mmf = 0.5 / (1 - this.es);
this.apa = authset(this.es);
switch (this.mode) {
case this.N_POLE:
this.dd = 1;
break;
case this.S_POLE:
this.dd = 1;
break;
case this.EQUIT:
this.rq = Math.sqrt(0.5 * this.qp);
this.dd = 1 / this.rq;
this.xmf = 1;
this.ymf = 0.5 * this.qp;
break;
case this.OBLIQ:
this.rq = Math.sqrt(0.5 * this.qp);
sinphi = Math.sin(this.lat0);
this.sinb1 = qsfnz(this.e, sinphi) / this.qp;
this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1);
this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1);
this.ymf = (this.xmf = this.rq) / this.dd;
this.xmf *= this.dd;
break;
}
}
else {
if (this.mode === this.OBLIQ) {
this.sinph0 = Math.sin(this.lat0);
this.cosph0 = Math.cos(this.lat0);
}
}
}
/* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y
-----------------------------------------------------------------------*/
function forward$j(p) {
/* Forward equations
-----------------*/
var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi;
var lam = p.x;
var phi = p.y;
lam = adjust_lon(lam - this.long0);
if (this.sphere) {
sinphi = Math.sin(phi);
cosphi = Math.cos(phi);
coslam = Math.cos(lam);
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
if (y <= EPSLN) {
return null;
}
y = Math.sqrt(2 / y);
x = y * cosphi * Math.sin(lam);
y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
}
else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
if (this.mode === this.N_POLE) {
coslam = -coslam;
}
if (Math.abs(phi + this.lat0) < EPSLN) {
return null;
}
y = FORTPI - phi * 0.5;
y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y));
x = y * Math.sin(lam);
y *= coslam;
}
}
else {
sinb = 0;
cosb = 0;
b = 0;
coslam = Math.cos(lam);
sinlam = Math.sin(lam);
sinphi = Math.sin(phi);
q = qsfnz(this.e, sinphi);
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
sinb = q / this.qp;
cosb = Math.sqrt(1 - sinb * sinb);
}
switch (this.mode) {
case this.OBLIQ:
b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam;
break;
case this.EQUIT:
b = 1 + cosb * coslam;
break;
case this.N_POLE:
b = HALF_PI + phi;
q = this.qp - q;
break;
case this.S_POLE:
b = phi - HALF_PI;
q = this.qp + q;
break;
}
if (Math.abs(b) < EPSLN) {
return null;
}
switch (this.mode) {
case this.OBLIQ:
case this.EQUIT:
b = Math.sqrt(2 / b);
if (this.mode === this.OBLIQ) {
y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam);
}
else {
y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf;
}
x = this.xmf * b * cosb * sinlam;
break;
case this.N_POLE:
case this.S_POLE:
if (q >= 0) {
x = (b = Math.sqrt(q)) * sinlam;
y = coslam * ((this.mode === this.S_POLE) ? b : -b);
}
else {
x = y = 0;
}
break;
}
}
p.x = this.a * x + this.x0;
p.y = this.a * y + this.y0;
return p;
}
/* Inverse equations
-----------------*/
function inverse$j(p) {
p.x -= this.x0;
p.y -= this.y0;
var x = p.x / this.a;
var y = p.y / this.a;
var lam, phi, cCe, sCe, q, rho, ab;
if (this.sphere) {
var cosz = 0,
rh, sinz = 0;
rh = Math.sqrt(x * x + y * y);
phi = rh * 0.5;
if (phi > 1) {
return null;
}
phi = 2 * Math.asin(phi);
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
sinz = Math.sin(phi);
cosz = Math.cos(phi);
}
switch (this.mode) {
case this.EQUIT:
phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh);
x *= sinz;
y = cosz * rh;
break;
case this.OBLIQ:
phi = (Math.abs(rh) <= EPSLN) ? this.lat0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh);
x *= sinz * this.cosph0;
y = (cosz - Math.sin(phi) * this.sinph0) * rh;
break;
case this.N_POLE:
y = -y;
phi = HALF_PI - phi;
break;
case this.S_POLE:
phi -= HALF_PI;
break;
}
lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y);
}
else {
ab = 0;
if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
x /= this.dd;
y *= this.dd;
rho = Math.sqrt(x * x + y * y);
if (rho < EPSLN) {
p.x = this.long0;
p.y = this.lat0;
return p;
}
sCe = 2 * Math.asin(0.5 * rho / this.rq);
cCe = Math.cos(sCe);
x *= (sCe = Math.sin(sCe));
if (this.mode === this.OBLIQ) {
ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho;
q = this.qp * ab;
y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe;
}
else {
ab = y * sCe / rho;
q = this.qp * ab;
y = rho * cCe;
}
}
else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
if (this.mode === this.N_POLE) {
y = -y;
}
q = (x * x + y * y);
if (!q) {
p.x = this.long0;
p.y = this.lat0;
return p;
}
ab = 1 - q / this.qp;
if (this.mode === this.S_POLE) {
ab = -ab;
}
}
lam = Math.atan2(x, y);
phi = authlat(Math.asin(ab), this.apa);
}
p.x = adjust_lon(this.long0 + lam);
p.y = phi;
return p;
}
/* determine latitude from authalic latitude */
var P00 = 0.33333333333333333333;
var P01 = 0.17222222222222222222;
var P02 = 0.10257936507936507936;
var P10 = 0.06388888888888888888;
var P11 = 0.06640211640211640211;
var P20 = 0.01641501294219154443;
function authset(es) {
var t;
var APA = [];
APA[0] = es * P00;
t = es * es;
APA[0] += t * P01;
APA[1] = t * P10;
t *= es;
APA[0] += t * P02;
APA[1] += t * P11;
APA[2] = t * P20;
return APA;
}
function authlat(beta, APA) {
var t = beta + beta;
return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t));
}
var names$k = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"];
var laea = {
init: init$k,
forward: forward$j,
inverse: inverse$j,
names: names$k,
S_POLE: S_POLE,
N_POLE: N_POLE,
EQUIT: EQUIT,
OBLIQ: OBLIQ
};
function asinz(x) {
if (Math.abs(x) > 1) {
x = (x > 1) ? 1 : -1;
}
return Math.asin(x);
}
function init$j() {
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
return;
}
this.temp = this.b / this.a;
this.es = 1 - Math.pow(this.temp, 2);
this.e3 = Math.sqrt(this.es);
this.sin_po = Math.sin(this.lat1);
this.cos_po = Math.cos(this.lat1);
this.t1 = this.sin_po;
this.con = this.sin_po;
this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po);
this.qs1 = qsfnz(this.e3, this.sin_po);
this.sin_po = Math.sin(this.lat2);
this.cos_po = Math.cos(this.lat2);
this.t2 = this.sin_po;
this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po);
this.qs2 = qsfnz(this.e3, this.sin_po);
this.sin_po = Math.sin(this.lat0);
this.cos_po = Math.cos(this.lat0);
this.t3 = this.sin_po;
this.qs0 = qsfnz(this.e3, this.sin_po);
if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1);
}
else {
this.ns0 = this.con;
}
this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0;
}
/* Albers Conical Equal Area forward equations--mapping lat,long to x,y
-------------------------------------------------------------------*/
function forward$i(p) {
var lon = p.x;
var lat = p.y;
this.sin_phi = Math.sin(lat);
this.cos_phi = Math.cos(lat);
var qs = qsfnz(this.e3, this.sin_phi);
var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0;
var theta = this.ns0 * adjust_lon(lon - this.long0);
var x = rh1 * Math.sin(theta) + this.x0;
var y = this.rh - rh1 * Math.cos(theta) + this.y0;
p.x = x;
p.y = y;
return p;
}
function inverse$i(p) {
var rh1, qs, con, theta, lon, lat;
p.x -= this.x0;
p.y = this.rh - p.y + this.y0;
if (this.ns0 >= 0) {
rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
con = 1;
}
else {
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
con = -1;
}
theta = 0;
if (rh1 !== 0) {
theta = Math.atan2(con * p.x, con * p.y);
}
con = rh1 * this.ns0 / this.a;
if (this.sphere) {
lat = Math.asin((this.c - con * con) / (2 * this.ns0));
}
else {
qs = (this.c - con * con) / this.ns0;
lat = this.phi1z(this.e3, qs);
}
lon = adjust_lon(theta / this.ns0 + this.long0);
p.x = lon;
p.y = lat;
return p;
}
/* Function to compute phi1, the latitude for the inverse of the
Albers Conical Equal-Area projection.
-------------------------------------------*/
function phi1z(eccent, qs) {
var sinphi, cosphi, con, com, dphi;
var phi = asinz(0.5 * qs);
if (eccent < EPSLN) {
return phi;
}
var eccnts = eccent * eccent;
for (var i = 1; i <= 25; i++) {
sinphi = Math.sin(phi);
cosphi = Math.cos(phi);
con = eccent * sinphi;
com = 1 - con * con;
dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
phi = phi + dphi;
if (Math.abs(dphi) <= 1e-7) {
return phi;
}
}
return null;
}
var names$j = ["Albers_Conic_Equal_Area", "Albers", "aea"];
var aea = {
init: init$j,
forward: forward$i,
inverse: inverse$i,
names: names$j,
phi1z: phi1z
};
/*
reference:
Wolfram Mathworld "Gnomonic Projection"
http://mathworld.wolfram.com/GnomonicProjection.html
Accessed: 12th November 2009
*/
function init$i() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
this.sin_p14 = Math.sin(this.lat0);
this.cos_p14 = Math.cos(this.lat0);
// Approximation for projecting points to the horizon (infinity)
this.infinity_dist = 1000 * this.a;
this.rc = 1;
}
/* Gnomonic forward equations--mapping lat,long to x,y
---------------------------------------------------*/
function forward$h(p) {
var sinphi, cosphi; /* sin and cos value */
var dlon; /* delta longitude value */
var coslon; /* cos of longitude */
var ksp; /* scale factor */
var g;
var x, y;
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
dlon = adjust_lon(lon - this.long0);
sinphi = Math.sin(lat);
cosphi = Math.cos(lat);
coslon = Math.cos(dlon);
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
ksp = 1;
if ((g > 0) || (Math.abs(g) <= EPSLN)) {
x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
}
else {
// Point is in the opposing hemisphere and is unprojectable
// We still need to return a reasonable point, so we project
// to infinity, on a bearing
// equivalent to the northern hemisphere equivalent
// This is a reasonable approximation for short shapes and lines that
// straddle the horizon.
x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
}
p.x = x;
p.y = y;
return p;
}
function inverse$h(p) {
var rh; /* Rho */
var sinc, cosc;
var c;
var lon, lat;
/* Inverse equations
-----------------*/
p.x = (p.x - this.x0) / this.a;
p.y = (p.y - this.y0) / this.a;
p.x /= this.k0;
p.y /= this.k0;
if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
c = Math.atan2(rh, this.rc);
sinc = Math.sin(c);
cosc = Math.cos(c);
lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
lon = adjust_lon(this.long0 + lon);
}
else {
lat = this.phic0;
lon = 0;
}
p.x = lon;
p.y = lat;
return p;
}
var names$i = ["gnom"];
var gnom = {
init: init$i,
forward: forward$h,
inverse: inverse$h,
names: names$i
};
function iqsfnz(eccent, q) {
var temp = 1 - (1 - eccent * eccent) / (2 * eccent) * Math.log((1 - eccent) / (1 + eccent));
if (Math.abs(Math.abs(q) - temp) < 1.0E-6) {
if (q < 0) {
return (-1 * HALF_PI);
}
else {
return HALF_PI;
}
}
//var phi = 0.5* q/(1-eccent*eccent);
var phi = Math.asin(0.5 * q);
var dphi;
var sin_phi;
var cos_phi;
var con;
for (var i = 0; i < 30; i++) {
sin_phi = Math.sin(phi);
cos_phi = Math.cos(phi);
con = eccent * sin_phi;
dphi = Math.pow(1 - con * con, 2) / (2 * cos_phi) * (q / (1 - eccent * eccent) - sin_phi / (1 - con * con) + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
phi += dphi;
if (Math.abs(dphi) <= 0.0000000001) {
return phi;
}
}
//console.log("IQSFN-CONV:Latitude failed to converge after 30 iterations");
return NaN;
}
/*
reference:
"Cartographic Projection Procedures for the UNIX Environment-
A User's Manual" by Gerald I. Evenden,
USGS Open File Report 90-284and Release 4 Interim Reports (2003)
*/
function init$h() {
//no-op
if (!this.sphere) {
this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
}
}
/* Cylindrical Equal Area forward equations--mapping lat,long to x,y
------------------------------------------------------------*/
function forward$g(p) {
var lon = p.x;
var lat = p.y;
var x, y;
/* Forward equations
-----------------*/
var dlon = adjust_lon(lon - this.long0);
if (this.sphere) {
x = this.x0 + this.a * dlon * Math.cos(this.lat_ts);
y = this.y0 + this.a * Math.sin(lat) / Math.cos(this.lat_ts);
}
else {
var qs = qsfnz(this.e, Math.sin(lat));
x = this.x0 + this.a * this.k0 * dlon;
y = this.y0 + this.a * qs * 0.5 / this.k0;
}
p.x = x;
p.y = y;
return p;
}
/* Cylindrical Equal Area inverse equations--mapping x,y to lat/long
------------------------------------------------------------*/
function inverse$g(p) {
p.x -= this.x0;
p.y -= this.y0;
var lon, lat;
if (this.sphere) {
lon = adjust_lon(this.long0 + (p.x / this.a) / Math.cos(this.lat_ts));
lat = Math.asin((p.y / this.a) * Math.cos(this.lat_ts));
}
else {
lat = iqsfnz(this.e, 2 * p.y * this.k0 / this.a);
lon = adjust_lon(this.long0 + p.x / (this.a * this.k0));
}
p.x = lon;
p.y = lat;
return p;
}
var names$h = ["cea"];
var cea = {
init: init$h,
forward: forward$g,
inverse: inverse$g,
names: names$h
};
function init$g() {
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
this.lat0 = this.lat0 || 0;
this.long0 = this.long0 || 0;
this.lat_ts = this.lat_ts || 0;
this.title = this.title || "Equidistant Cylindrical (Plate Carre)";
this.rc = Math.cos(this.lat_ts);
}
// forward equations--mapping lat,long to x,y
// -----------------------------------------------------------------
function forward$f(p) {
var lon = p.x;
var lat = p.y;
var dlon = adjust_lon(lon - this.long0);
var dlat = adjust_lat(lat - this.lat0);
p.x = this.x0 + (this.a * dlon * this.rc);
p.y = this.y0 + (this.a * dlat);
return p;
}
// inverse equations--mapping x,y to lat/long
// -----------------------------------------------------------------
function inverse$f(p) {
var x = p.x;
var y = p.y;
p.x = adjust_lon(this.long0 + ((x - this.x0) / (this.a * this.rc)));
p.y = adjust_lat(this.lat0 + ((y - this.y0) / (this.a)));
return p;
}
var names$g = ["Equirectangular", "Equidistant_Cylindrical", "eqc"];
var eqc = {
init: init$g,
forward: forward$f,
inverse: inverse$f,
names: names$g
};
var MAX_ITER$1 = 20;
function init$f() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
this.temp = this.b / this.a;
this.es = 1 - Math.pow(this.temp, 2); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles
this.e = Math.sqrt(this.es);
this.e0 = e0fn(this.es);
this.e1 = e1fn(this.es);
this.e2 = e2fn(this.es);
this.e3 = e3fn(this.es);
this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); //si que des zeros le calcul ne se fait pas
}
/* Polyconic forward equations--mapping lat,long to x,y
---------------------------------------------------*/
function forward$e(p) {
var lon = p.x;
var lat = p.y;
var x, y, el;
var dlon = adjust_lon(lon - this.long0);
el = dlon * Math.sin(lat);
if (this.sphere) {
if (Math.abs(lat) <= EPSLN) {
x = this.a * dlon;
y = -1 * this.a * this.lat0;
}
else {
x = this.a * Math.sin(el) / Math.tan(lat);
y = this.a * (adjust_lat(lat - this.lat0) + (1 - Math.cos(el)) / Math.tan(lat));
}
}
else {
if (Math.abs(lat) <= EPSLN) {
x = this.a * dlon;
y = -1 * this.ml0;
}
else {
var nl = gN(this.a, this.e, Math.sin(lat)) / Math.tan(lat);
x = nl * Math.sin(el);
y = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat) - this.ml0 + nl * (1 - Math.cos(el));
}
}
p.x = x + this.x0;
p.y = y + this.y0;
return p;
}
/* Inverse equations
-----------------*/
function inverse$e(p) {
var lon, lat, x, y, i;
var al, bl;
var phi, dphi;
x = p.x - this.x0;
y = p.y - this.y0;
if (this.sphere) {
if (Math.abs(y + this.a * this.lat0) <= EPSLN) {
lon = adjust_lon(x / this.a + this.long0);
lat = 0;
}
else {
al = this.lat0 + y / this.a;
bl = x * x / this.a / this.a + al * al;
phi = al;
var tanphi;
for (i = MAX_ITER$1; i; --i) {
tanphi = Math.tan(phi);
dphi = -1 * (al * (phi * tanphi + 1) - phi - 0.5 * (phi * phi + bl) * tanphi) / ((phi - al) / tanphi - 1);
phi += dphi;
if (Math.abs(dphi) <= EPSLN) {
lat = phi;
break;
}
}
lon = adjust_lon(this.long0 + (Math.asin(x * Math.tan(phi) / this.a)) / Math.sin(lat));
}
}
else {
if (Math.abs(y + this.ml0) <= EPSLN) {
lat = 0;
lon = adjust_lon(this.long0 + x / this.a);
}
else {
al = (this.ml0 + y) / this.a;
bl = x * x / this.a / this.a + al * al;
phi = al;
var cl, mln, mlnp, ma;
var con;
for (i = MAX_ITER$1; i; --i) {
con = this.e * Math.sin(phi);
cl = Math.sqrt(1 - con * con) * Math.tan(phi);
mln = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
mlnp = this.e0 - 2 * this.e1 * Math.cos(2 * phi) + 4 * this.e2 * Math.cos(4 * phi) - 6 * this.e3 * Math.cos(6 * phi);
ma = mln / this.a;
dphi = (al * (cl * ma + 1) - ma - 0.5 * cl * (ma * ma + bl)) / (this.es * Math.sin(2 * phi) * (ma * ma + bl - 2 * al * ma) / (4 * cl) + (al - ma) * (cl * mlnp - 2 / Math.sin(2 * phi)) - mlnp);
phi -= dphi;
if (Math.abs(dphi) <= EPSLN) {
lat = phi;
break;
}
}
//lat=phi4z(this.e,this.e0,this.e1,this.e2,this.e3,al,bl,0,0);
cl = Math.sqrt(1 - this.es * Math.pow(Math.sin(lat), 2)) * Math.tan(lat);
lon = adjust_lon(this.long0 + Math.asin(x * cl / this.a) / Math.sin(lat));
}
}
p.x = lon;
p.y = lat;
return p;
}
var names$f = ["Polyconic", "poly"];
var poly = {
init: init$f,
forward: forward$e,
inverse: inverse$e,
names: names$f
};
function init$e() {
this.A = [];
this.A[1] = 0.6399175073;
this.A[2] = -0.1358797613;
this.A[3] = 0.063294409;
this.A[4] = -0.02526853;
this.A[5] = 0.0117879;
this.A[6] = -55161e-7;
this.A[7] = 0.0026906;
this.A[8] = -1333e-6;
this.A[9] = 0.00067;
this.A[10] = -34e-5;
this.B_re = [];
this.B_im = [];
this.B_re[1] = 0.7557853228;
this.B_im[1] = 0;
this.B_re[2] = 0.249204646;
this.B_im[2] = 0.003371507;
this.B_re[3] = -1541739e-9;
this.B_im[3] = 0.041058560;
this.B_re[4] = -0.10162907;
this.B_im[4] = 0.01727609;
this.B_re[5] = -0.26623489;
this.B_im[5] = -0.36249218;
this.B_re[6] = -0.6870983;
this.B_im[6] = -1.1651967;
this.C_re = [];
this.C_im = [];
this.C_re[1] = 1.3231270439;
this.C_im[1] = 0;
this.C_re[2] = -0.577245789;
this.C_im[2] = -7809598e-9;
this.C_re[3] = 0.508307513;
this.C_im[3] = -0.112208952;
this.C_re[4] = -0.15094762;
this.C_im[4] = 0.18200602;
this.C_re[5] = 1.01418179;
this.C_im[5] = 1.64497696;
this.C_re[6] = 1.9660549;
this.C_im[6] = 2.5127645;
this.D = [];
this.D[1] = 1.5627014243;
this.D[2] = 0.5185406398;
this.D[3] = -0.03333098;
this.D[4] = -0.1052906;
this.D[5] = -0.0368594;
this.D[6] = 0.007317;
this.D[7] = 0.01220;
this.D[8] = 0.00394;
this.D[9] = -13e-4;
}
/**
New Zealand Map Grid Forward - long/lat to x/y
long/lat in radians
*/
function forward$d(p) {
var n;
var lon = p.x;
var lat = p.y;
var delta_lat = lat - this.lat0;
var delta_lon = lon - this.long0;
// 1. Calculate d_phi and d_psi ... // and d_lambda
// For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians.
var d_phi = delta_lat / SEC_TO_RAD * 1E-5;
var d_lambda = delta_lon;
var d_phi_n = 1; // d_phi^0
var d_psi = 0;
for (n = 1; n <= 10; n++) {
d_phi_n = d_phi_n * d_phi;
d_psi = d_psi + this.A[n] * d_phi_n;
}
// 2. Calculate theta
var th_re = d_psi;
var th_im = d_lambda;
// 3. Calculate z
var th_n_re = 1;
var th_n_im = 0; // theta^0
var th_n_re1;
var th_n_im1;
var z_re = 0;
var z_im = 0;
for (n = 1; n <= 6; n++) {
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
th_n_re = th_n_re1;
th_n_im = th_n_im1;
z_re = z_re + this.B_re[n] * th_n_re - this.B_im[n] * th_n_im;
z_im = z_im + this.B_im[n] * th_n_re + this.B_re[n] * th_n_im;
}
// 4. Calculate easting and northing
p.x = (z_im * this.a) + this.x0;
p.y = (z_re * this.a) + this.y0;
return p;
}
/**
New Zealand Map Grid Inverse - x/y to long/lat
*/
function inverse$d(p) {
var n;
var x = p.x;
var y = p.y;
var delta_x = x - this.x0;
var delta_y = y - this.y0;
// 1. Calculate z
var z_re = delta_y / this.a;
var z_im = delta_x / this.a;
// 2a. Calculate theta - first approximation gives km accuracy
var z_n_re = 1;
var z_n_im = 0; // z^0
var z_n_re1;
var z_n_im1;
var th_re = 0;
var th_im = 0;
for (n = 1; n <= 6; n++) {
z_n_re1 = z_n_re * z_re - z_n_im * z_im;
z_n_im1 = z_n_im * z_re + z_n_re * z_im;
z_n_re = z_n_re1;
z_n_im = z_n_im1;
th_re = th_re + this.C_re[n] * z_n_re - this.C_im[n] * z_n_im;
th_im = th_im + this.C_im[n] * z_n_re + this.C_re[n] * z_n_im;
}
// 2b. Iterate to refine the accuracy of the calculation
// 0 iterations gives km accuracy
// 1 iteration gives m accuracy -- good enough for most mapping applications
// 2 iterations bives mm accuracy
for (var i = 0; i < this.iterations; i++) {
var th_n_re = th_re;
var th_n_im = th_im;
var th_n_re1;
var th_n_im1;
var num_re = z_re;
var num_im = z_im;
for (n = 2; n <= 6; n++) {
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
th_n_re = th_n_re1;
th_n_im = th_n_im1;
num_re = num_re + (n - 1) * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
num_im = num_im + (n - 1) * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
}
th_n_re = 1;
th_n_im = 0;
var den_re = this.B_re[1];
var den_im = this.B_im[1];
for (n = 2; n <= 6; n++) {
th_n_re1 = th_n_re * th_re - th_n_im * th_im;
th_n_im1 = th_n_im * th_re + th_n_re * th_im;
th_n_re = th_n_re1;
th_n_im = th_n_im1;
den_re = den_re + n * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
den_im = den_im + n * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
}
// Complex division
var den2 = den_re * den_re + den_im * den_im;
th_re = (num_re * den_re + num_im * den_im) / den2;
th_im = (num_im * den_re - num_re * den_im) / den2;
}
// 3. Calculate d_phi ... // and d_lambda
var d_psi = th_re;
var d_lambda = th_im;
var d_psi_n = 1; // d_psi^0
var d_phi = 0;
for (n = 1; n <= 9; n++) {
d_psi_n = d_psi_n * d_psi;
d_phi = d_phi + this.D[n] * d_psi_n;
}
// 4. Calculate latitude and longitude
// d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians.
var lat = this.lat0 + (d_phi * SEC_TO_RAD * 1E5);
var lon = this.long0 + d_lambda;
p.x = lon;
p.y = lat;
return p;
}
var names$e = ["New_Zealand_Map_Grid", "nzmg"];
var nzmg = {
init: init$e,
forward: forward$d,
inverse: inverse$d,
names: names$e
};
/*
reference
"New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
*/
/* Initialize the Miller Cylindrical projection
-------------------------------------------*/
function init$d() {
//no-op
}
/* Miller Cylindrical forward equations--mapping lat,long to x,y
------------------------------------------------------------*/
function forward$c(p) {
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
var dlon = adjust_lon(lon - this.long0);
var x = this.x0 + this.a * dlon;
var y = this.y0 + this.a * Math.log(Math.tan((Math.PI / 4) + (lat / 2.5))) * 1.25;
p.x = x;
p.y = y;
return p;
}
/* Miller Cylindrical inverse equations--mapping x,y to lat/long
------------------------------------------------------------*/
function inverse$c(p) {
p.x -= this.x0;
p.y -= this.y0;
var lon = adjust_lon(this.long0 + p.x / this.a);
var lat = 2.5 * (Math.atan(Math.exp(0.8 * p.y / this.a)) - Math.PI / 4);
p.x = lon;
p.y = lat;
return p;
}
var names$d = ["Miller_Cylindrical", "mill"];
var mill = {
init: init$d,
forward: forward$c,
inverse: inverse$c,
names: names$d
};
var MAX_ITER = 20;
function init$c() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
if (!this.sphere) {
this.en = pj_enfn(this.es);
}
else {
this.n = 1;
this.m = 0;
this.es = 0;
this.C_y = Math.sqrt((this.m + 1) / this.n);
this.C_x = this.C_y / (this.m + 1);
}
}
/* Sinusoidal forward equations--mapping lat,long to x,y
-----------------------------------------------------*/
function forward$b(p) {
var x, y;
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
lon = adjust_lon(lon - this.long0);
if (this.sphere) {
if (!this.m) {
lat = this.n !== 1 ? Math.asin(this.n * Math.sin(lat)) : lat;
}
else {
var k = this.n * Math.sin(lat);
for (var i = MAX_ITER; i; --i) {
var V = (this.m * lat + Math.sin(lat) - k) / (this.m + Math.cos(lat));
lat -= V;
if (Math.abs(V) < EPSLN) {
break;
}
}
}
x = this.a * this.C_x * lon * (this.m + Math.cos(lat));
y = this.a * this.C_y * lat;
}
else {
var s = Math.sin(lat);
var c = Math.cos(lat);
y = this.a * pj_mlfn(lat, s, c, this.en);
x = this.a * lon * c / Math.sqrt(1 - this.es * s * s);
}
p.x = x;
p.y = y;
return p;
}
function inverse$b(p) {
var lat, temp, lon, s;
p.x -= this.x0;
lon = p.x / this.a;
p.y -= this.y0;
lat = p.y / this.a;
if (this.sphere) {
lat /= this.C_y;
lon = lon / (this.C_x * (this.m + Math.cos(lat)));
if (this.m) {
lat = asinz((this.m * lat + Math.sin(lat)) / this.n);
}
else if (this.n !== 1) {
lat = asinz(Math.sin(lat) / this.n);
}
lon = adjust_lon(lon + this.long0);
lat = adjust_lat(lat);
}
else {
lat = pj_inv_mlfn(p.y / this.a, this.es, this.en);
s = Math.abs(lat);
if (s < HALF_PI) {
s = Math.sin(lat);
temp = this.long0 + p.x * Math.sqrt(1 - this.es * s * s) / (this.a * Math.cos(lat));
//temp = this.long0 + p.x / (this.a * Math.cos(lat));
lon = adjust_lon(temp);
}
else if ((s - EPSLN) < HALF_PI) {
lon = this.long0;
}
}
p.x = lon;
p.y = lat;
return p;
}
var names$c = ["Sinusoidal", "sinu"];
var sinu = {
init: init$c,
forward: forward$b,
inverse: inverse$b,
names: names$c
};
function init$b() {}
/* Mollweide forward equations--mapping lat,long to x,y
----------------------------------------------------*/
function forward$a(p) {
/* Forward equations
-----------------*/
var lon = p.x;
var lat = p.y;
var delta_lon = adjust_lon(lon - this.long0);
var theta = lat;
var con = Math.PI * Math.sin(lat);
/* Iterate using the Newton-Raphson method to find theta
-----------------------------------------------------*/
while (true) {
var delta_theta = -(theta + Math.sin(theta) - con) / (1 + Math.cos(theta));
theta += delta_theta;
if (Math.abs(delta_theta) < EPSLN) {
break;
}
}
theta /= 2;
/* If the latitude is 90 deg, force the x coordinate to be "0 + false easting"
this is done here because of precision problems with "cos(theta)"
--------------------------------------------------------------------------*/
if (Math.PI / 2 - Math.abs(lat) < EPSLN) {
delta_lon = 0;
}
var x = 0.900316316158 * this.a * delta_lon * Math.cos(theta) + this.x0;
var y = 1.4142135623731 * this.a * Math.sin(theta) + this.y0;
p.x = x;
p.y = y;
return p;
}
function inverse$a(p) {
var theta;
var arg;
/* Inverse equations
-----------------*/
p.x -= this.x0;
p.y -= this.y0;
arg = p.y / (1.4142135623731 * this.a);
/* Because of division by zero problems, 'arg' can not be 1. Therefore
a number very close to one is used instead.
-------------------------------------------------------------------*/
if (Math.abs(arg) > 0.999999999999) {
arg = 0.999999999999;
}
theta = Math.asin(arg);
var lon = adjust_lon(this.long0 + (p.x / (0.900316316158 * this.a * Math.cos(theta))));
if (lon < (-Math.PI)) {
lon = -Math.PI;
}
if (lon > Math.PI) {
lon = Math.PI;
}
arg = (2 * theta + Math.sin(2 * theta)) / Math.PI;
if (Math.abs(arg) > 1) {
arg = 1;
}
var lat = Math.asin(arg);
p.x = lon;
p.y = lat;
return p;
}
var names$b = ["Mollweide", "moll"];
var moll = {
init: init$b,
forward: forward$a,
inverse: inverse$a,
names: names$b
};
function init$a() {
/* Place parameters in static storage for common use
-------------------------------------------------*/
// Standard Parallels cannot be equal and on opposite sides of the equator
if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
return;
}
this.lat2 = this.lat2 || this.lat1;
this.temp = this.b / this.a;
this.es = 1 - Math.pow(this.temp, 2);
this.e = Math.sqrt(this.es);
this.e0 = e0fn(this.es);
this.e1 = e1fn(this.es);
this.e2 = e2fn(this.es);
this.e3 = e3fn(this.es);
this.sinphi = Math.sin(this.lat1);
this.cosphi = Math.cos(this.lat1);
this.ms1 = msfnz(this.e, this.sinphi, this.cosphi);
this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1);
if (Math.abs(this.lat1 - this.lat2) < EPSLN) {
this.ns = this.sinphi;
}
else {
this.sinphi = Math.sin(this.lat2);
this.cosphi = Math.cos(this.lat2);
this.ms2 = msfnz(this.e, this.sinphi, this.cosphi);
this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2);
this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1);
}
this.g = this.ml1 + this.ms1 / this.ns;
this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
this.rh = this.a * (this.g - this.ml0);
}
/* Equidistant Conic forward equations--mapping lat,long to x,y
-----------------------------------------------------------*/
function forward$9(p) {
var lon = p.x;
var lat = p.y;
var rh1;
/* Forward equations
-----------------*/
if (this.sphere) {
rh1 = this.a * (this.g - lat);
}
else {
var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat);
rh1 = this.a * (this.g - ml);
}
var theta = this.ns * adjust_lon(lon - this.long0);
var x = this.x0 + rh1 * Math.sin(theta);
var y = this.y0 + this.rh - rh1 * Math.cos(theta);
p.x = x;
p.y = y;
return p;
}
/* Inverse equations
-----------------*/
function inverse$9(p) {
p.x -= this.x0;
p.y = this.rh - p.y + this.y0;
var con, rh1, lat, lon;
if (this.ns >= 0) {
rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
con = 1;
}
else {
rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
con = -1;
}
var theta = 0;
if (rh1 !== 0) {
theta = Math.atan2(con * p.x, con * p.y);
}
if (this.sphere) {
lon = adjust_lon(this.long0 + theta / this.ns);
lat = adjust_lat(this.g - rh1 / this.a);
p.x = lon;
p.y = lat;
return p;
}
else {
var ml = this.g - rh1 / this.a;
lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3);
lon = adjust_lon(this.long0 + theta / this.ns);
p.x = lon;
p.y = lat;
return p;
}
}
var names$a = ["Equidistant_Conic", "eqdc"];
var eqdc = {
init: init$a,
forward: forward$9,
inverse: inverse$9,
names: names$a
};
/* Initialize the Van Der Grinten projection
----------------------------------------*/
function init$9() {
//this.R = 6370997; //Radius of earth
this.R = this.a;
}
function forward$8(p) {
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
var dlon = adjust_lon(lon - this.long0);
var x, y;
if (Math.abs(lat) <= EPSLN) {
x = this.x0 + this.R * dlon;
y = this.y0;
}
var theta = asinz(2 * Math.abs(lat / Math.PI));
if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) {
x = this.x0;
if (lat >= 0) {
y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta);
}
else {
y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta);
}
// return(OK);
}
var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI));
var asq = al * al;
var sinth = Math.sin(theta);
var costh = Math.cos(theta);
var g = costh / (sinth + costh - 1);
var gsq = g * g;
var m = g * (2 / sinth - 1);
var msq = m * m;
var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq);
if (dlon < 0) {
con = -con;
}
x = this.x0 + con;
//con = Math.abs(con / (Math.PI * this.R));
var q = asq + g;
con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq);
if (lat >= 0) {
//y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
y = this.y0 + con;
}
else {
//y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
y = this.y0 - con;
}
p.x = x;
p.y = y;
return p;
}
/* Van Der Grinten inverse equations--mapping x,y to lat/long
---------------------------------------------------------*/
function inverse$8(p) {
var lon, lat;
var xx, yy, xys, c1, c2, c3;
var a1;
var m1;
var con;
var th1;
var d;
/* inverse equations
-----------------*/
p.x -= this.x0;
p.y -= this.y0;
con = Math.PI * this.R;
xx = p.x / con;
yy = p.y / con;
xys = xx * xx + yy * yy;
c1 = -Math.abs(yy) * (1 + xys);
c2 = c1 - 2 * yy * yy + xx * xx;
c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys;
d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27;
a1 = (c1 - c2 * c2 / 3 / c3) / c3;
m1 = 2 * Math.sqrt(-a1 / 3);
con = ((3 * d) / a1) / m1;
if (Math.abs(con) > 1) {
if (con >= 0) {
con = 1;
}
else {
con = -1;
}
}
th1 = Math.acos(con) / 3;
if (p.y >= 0) {
lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
}
else {
lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
}
if (Math.abs(xx) < EPSLN) {
lon = this.long0;
}
else {
lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx);
}
p.x = lon;
p.y = lat;
return p;
}
var names$9 = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"];
var vandg = {
init: init$9,
forward: forward$8,
inverse: inverse$8,
names: names$9
};
function init$8() {
this.sin_p12 = Math.sin(this.lat0);
this.cos_p12 = Math.cos(this.lat0);
}
function forward$7(p) {
var lon = p.x;
var lat = p.y;
var sinphi = Math.sin(p.y);
var cosphi = Math.cos(p.y);
var dlon = adjust_lon(lon - this.long0);
var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5;
if (this.sphere) {
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
//North Pole case
p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon);
p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon);
return p;
}
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
//South Pole case
p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon);
p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon);
return p;
}
else {
//default case
cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon);
c = Math.acos(cos_c);
kp = c ? c / Math.sin(c) : 1;
p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon);
p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon));
return p;
}
}
else {
e0 = e0fn(this.es);
e1 = e1fn(this.es);
e2 = e2fn(this.es);
e3 = e3fn(this.es);
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
//North Pole case
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon);
p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon);
return p;
}
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
//South Pole case
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
Ml = this.a * mlfn(e0, e1, e2, e3, lat);
p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon);
p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon);
return p;
}
else {
//Default case
tanphi = sinphi / cosphi;
Nl1 = gN(this.a, this.e, this.sin_p12);
Nl = gN(this.a, this.e, sinphi);
psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi));
Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon));
if (Az === 0) {
s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
}
else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) {
s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
}
else {
s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az));
}
G = this.e * this.sin_p12 / Math.sqrt(1 - this.es);
H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es);
GH = G * H;
Hs = H * H;
s2 = s * s;
s3 = s2 * s;
s4 = s3 * s;
s5 = s4 * s;
c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH);
p.x = this.x0 + c * Math.sin(Az);
p.y = this.y0 + c * Math.cos(Az);
return p;
}
}
}
function inverse$7(p) {
p.x -= this.x0;
p.y -= this.y0;
var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F, sinpsi;
if (this.sphere) {
rh = Math.sqrt(p.x * p.x + p.y * p.y);
if (rh > (2 * HALF_PI * this.a)) {
return;
}
z = rh / this.a;
sinz = Math.sin(z);
cosz = Math.cos(z);
lon = this.long0;
if (Math.abs(rh) <= EPSLN) {
lat = this.lat0;
}
else {
lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh);
con = Math.abs(this.lat0) - HALF_PI;
if (Math.abs(con) <= EPSLN) {
if (this.lat0 >= 0) {
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
}
else {
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
}
}
else {
/*con = cosz - this.sin_p12 * Math.sin(lat);
if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) {
//no-op, just keep the lon value as is
} else {
var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh));
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh)));
}*/
lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz));
}
}
p.x = lon;
p.y = lat;
return p;
}
else {
e0 = e0fn(this.es);
e1 = e1fn(this.es);
e2 = e2fn(this.es);
e3 = e3fn(this.es);
if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
//North pole case
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
rh = Math.sqrt(p.x * p.x + p.y * p.y);
M = Mlp - rh;
lat = imlfn(M / this.a, e0, e1, e2, e3);
lon = adjust_lon(this.long0 + Math.atan2(p.x, -1 * p.y));
p.x = lon;
p.y = lat;
return p;
}
else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
//South pole case
Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
rh = Math.sqrt(p.x * p.x + p.y * p.y);
M = rh - Mlp;
lat = imlfn(M / this.a, e0, e1, e2, e3);
lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
p.x = lon;
p.y = lat;
return p;
}
else {
//default case
rh = Math.sqrt(p.x * p.x + p.y * p.y);
Az = Math.atan2(p.x, p.y);
N1 = gN(this.a, this.e, this.sin_p12);
cosAz = Math.cos(Az);
tmp = this.e * this.cos_p12 * cosAz;
A = -tmp * tmp / (1 - this.es);
B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es);
D = rh / N1;
Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24;
F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6;
psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz);
lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi)));
sinpsi = Math.sin(psi);
lat = Math.atan2((sinpsi - this.es * F * this.sin_p12) * Math.tan(psi), sinpsi * (1 - this.es));
p.x = lon;
p.y = lat;
return p;
}
}
}
var names$8 = ["Azimuthal_Equidistant", "aeqd"];
var aeqd = {
init: init$8,
forward: forward$7,
inverse: inverse$7,
names: names$8
};
function init$7() {
//double temp; /* temporary variable */
/* Place parameters in static storage for common use
-------------------------------------------------*/
this.sin_p14 = Math.sin(this.lat0);
this.cos_p14 = Math.cos(this.lat0);
}
/* Orthographic forward equations--mapping lat,long to x,y
---------------------------------------------------*/
function forward$6(p) {
var sinphi, cosphi; /* sin and cos value */
var dlon; /* delta longitude value */
var coslon; /* cos of longitude */
var ksp; /* scale factor */
var g, x, y;
var lon = p.x;
var lat = p.y;
/* Forward equations
-----------------*/
dlon = adjust_lon(lon - this.long0);
sinphi = Math.sin(lat);
cosphi = Math.cos(lat);
coslon = Math.cos(dlon);
g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
ksp = 1;
if ((g > 0) || (Math.abs(g) <= EPSLN)) {
x = this.a * ksp * cosphi * Math.sin(dlon);
y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
}
p.x = x;
p.y = y;
return p;
}
function inverse$6(p) {
var rh; /* height above ellipsoid */
var z; /* angle */
var sinz, cosz; /* sin of z and cos of z */
var con;
var lon, lat;
/* Inverse equations
-----------------*/
p.x -= this.x0;
p.y -= this.y0;
rh = Math.sqrt(p.x * p.x + p.y * p.y);
z = asinz(rh / this.a);
sinz = Math.sin(z);
cosz = Math.cos(z);
lon = this.long0;
if (Math.abs(rh) <= EPSLN) {
lat = this.lat0;
p.x = lon;
p.y = lat;
return p;
}
lat = asinz(cosz * this.sin_p14 + (p.y * sinz * this.cos_p14) / rh);
con = Math.abs(this.lat0) - HALF_PI;
if (Math.abs(con) <= EPSLN) {
if (this.lat0 >= 0) {
lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
}
else {
lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
}
p.x = lon;
p.y = lat;
return p;
}
lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz), rh * this.cos_p14 * cosz - p.y * this.sin_p14 * sinz));
p.x = lon;
p.y = lat;
return p;
}
var names$7 = ["ortho"];
var ortho = {
init: init$7,
forward: forward$6,
inverse: inverse$6,
names: names$7
};
// QSC projection rewritten from the original PROJ4
// https://github.com/OSGeo/proj.4/blob/master/src/PJ_qsc.c
/* constants */
var FACE_ENUM = {
FRONT: 1,
RIGHT: 2,
BACK: 3,
LEFT: 4,
TOP: 5,
BOTTOM: 6
};
var AREA_ENUM = {
AREA_0: 1,
AREA_1: 2,
AREA_2: 3,
AREA_3: 4
};
function init$6() {
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
this.lat0 = this.lat0 || 0;
this.long0 = this.long0 || 0;
this.lat_ts = this.lat_ts || 0;
this.title = this.title || "Quadrilateralized Spherical Cube";
/* Determine the cube face from the center of projection. */
if (this.lat0 >= HALF_PI - FORTPI / 2.0) {
this.face = FACE_ENUM.TOP;
} else if (this.lat0 <= -(HALF_PI - FORTPI / 2.0)) {
this.face = FACE_ENUM.BOTTOM;
} else if (Math.abs(this.long0) <= FORTPI) {
this.face = FACE_ENUM.FRONT;
} else if (Math.abs(this.long0) <= HALF_PI + FORTPI) {
this.face = this.long0 > 0.0 ? FACE_ENUM.RIGHT : FACE_ENUM.LEFT;
} else {
this.face = FACE_ENUM.BACK;
}
/* Fill in useful values for the ellipsoid <-> sphere shift
* described in [LK12]. */
if (this.es !== 0) {
this.one_minus_f = 1 - (this.a - this.b) / this.a;
this.one_minus_f_squared = this.one_minus_f * this.one_minus_f;
}
}
// QSC forward equations--mapping lat,long to x,y
// -----------------------------------------------------------------
function forward$5(p) {
var xy = {x: 0, y: 0};
var lat, lon;
var theta, phi;
var t, mu;
/* nu; */
var area = {value: 0};
// move lon according to projection's lon
p.x -= this.long0;
/* Convert the geodetic latitude to a geocentric latitude.
* This corresponds to the shift from the ellipsoid to the sphere
* described in [LK12]. */
if (this.es !== 0) {//if (P->es != 0) {
lat = Math.atan(this.one_minus_f_squared * Math.tan(p.y));
} else {
lat = p.y;
}
/* Convert the input lat, lon into theta, phi as used by QSC.
* This depends on the cube face and the area on it.
* For the top and bottom face, we can compute theta and phi
* directly from phi, lam. For the other faces, we must use
* unit sphere cartesian coordinates as an intermediate step. */
lon = p.x; //lon = lp.lam;
if (this.face === FACE_ENUM.TOP) {
phi = HALF_PI - lat;
if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
area.value = AREA_ENUM.AREA_0;
theta = lon - HALF_PI;
} else if (lon > HALF_PI + FORTPI || lon <= -(HALF_PI + FORTPI)) {
area.value = AREA_ENUM.AREA_1;
theta = (lon > 0.0 ? lon - SPI : lon + SPI);
} else if (lon > -(HALF_PI + FORTPI) && lon <= -FORTPI) {
area.value = AREA_ENUM.AREA_2;
theta = lon + HALF_PI;
} else {
area.value = AREA_ENUM.AREA_3;
theta = lon;
}
} else if (this.face === FACE_ENUM.BOTTOM) {
phi = HALF_PI + lat;
if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
area.value = AREA_ENUM.AREA_0;
theta = -lon + HALF_PI;
} else if (lon < FORTPI && lon >= -FORTPI) {
area.value = AREA_ENUM.AREA_1;
theta = -lon;
} else if (lon < -FORTPI && lon >= -(HALF_PI + FORTPI)) {
area.value = AREA_ENUM.AREA_2;
theta = -lon - HALF_PI;
} else {
area.value = AREA_ENUM.AREA_3;
theta = (lon > 0.0 ? -lon + SPI : -lon - SPI);
}
} else {
var q, r, s;
var sinlat, coslat;
var sinlon, coslon;
if (this.face === FACE_ENUM.RIGHT) {
lon = qsc_shift_lon_origin(lon, +HALF_PI);
} else if (this.face === FACE_ENUM.BACK) {
lon = qsc_shift_lon_origin(lon, +SPI);
} else if (this.face === FACE_ENUM.LEFT) {
lon = qsc_shift_lon_origin(lon, -HALF_PI);
}
sinlat = Math.sin(lat);
coslat = Math.cos(lat);
sinlon = Math.sin(lon);
coslon = Math.cos(lon);
q = coslat * coslon;
r = coslat * sinlon;
s = sinlat;
if (this.face === FACE_ENUM.FRONT) {
phi = Math.acos(q);
theta = qsc_fwd_equat_face_theta(phi, s, r, area);
} else if (this.face === FACE_ENUM.RIGHT) {
phi = Math.acos(r);
theta = qsc_fwd_equat_face_theta(phi, s, -q, area);
} else if (this.face === FACE_ENUM.BACK) {
phi = Math.acos(-q);
theta = qsc_fwd_equat_face_theta(phi, s, -r, area);
} else if (this.face === FACE_ENUM.LEFT) {
phi = Math.acos(-r);
theta = qsc_fwd_equat_face_theta(phi, s, q, area);
} else {
/* Impossible */
phi = theta = 0;
area.value = AREA_ENUM.AREA_0;
}
}
/* Compute mu and nu for the area of definition.
* For mu, see Eq. (3-21) in [OL76], but note the typos:
* compare with Eq. (3-14). For nu, see Eq. (3-38). */
mu = Math.atan((12 / SPI) * (theta + Math.acos(Math.sin(theta) * Math.cos(FORTPI)) - HALF_PI));
t = Math.sqrt((1 - Math.cos(phi)) / (Math.cos(mu) * Math.cos(mu)) / (1 - Math.cos(Math.atan(1 / Math.cos(theta)))));
/* Apply the result to the real area. */
if (area.value === AREA_ENUM.AREA_1) {
mu += HALF_PI;
} else if (area.value === AREA_ENUM.AREA_2) {
mu += SPI;
} else if (area.value === AREA_ENUM.AREA_3) {
mu += 1.5 * SPI;
}
/* Now compute x, y from mu and nu */
xy.x = t * Math.cos(mu);
xy.y = t * Math.sin(mu);
xy.x = xy.x * this.a + this.x0;
xy.y = xy.y * this.a + this.y0;
p.x = xy.x;
p.y = xy.y;
return p;
}
// QSC inverse equations--mapping x,y to lat/long
// -----------------------------------------------------------------
function inverse$5(p) {
var lp = {lam: 0, phi: 0};
var mu, nu, cosmu, tannu;
var tantheta, theta, cosphi, phi;
var t;
var area = {value: 0};
/* de-offset */
p.x = (p.x - this.x0) / this.a;
p.y = (p.y - this.y0) / this.a;
/* Convert the input x, y to the mu and nu angles as used by QSC.
* This depends on the area of the cube face. */
nu = Math.atan(Math.sqrt(p.x * p.x + p.y * p.y));
mu = Math.atan2(p.y, p.x);
if (p.x >= 0.0 && p.x >= Math.abs(p.y)) {
area.value = AREA_ENUM.AREA_0;
} else if (p.y >= 0.0 && p.y >= Math.abs(p.x)) {
area.value = AREA_ENUM.AREA_1;
mu -= HALF_PI;
} else if (p.x < 0.0 && -p.x >= Math.abs(p.y)) {
area.value = AREA_ENUM.AREA_2;
mu = (mu < 0.0 ? mu + SPI : mu - SPI);
} else {
area.value = AREA_ENUM.AREA_3;
mu += HALF_PI;
}
/* Compute phi and theta for the area of definition.
* The inverse projection is not described in the original paper, but some
* good hints can be found here (as of 2011-12-14):
* http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302
* (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */
t = (SPI / 12) * Math.tan(mu);
tantheta = Math.sin(t) / (Math.cos(t) - (1 / Math.sqrt(2)));
theta = Math.atan(tantheta);
cosmu = Math.cos(mu);
tannu = Math.tan(nu);
cosphi = 1 - cosmu * cosmu * tannu * tannu * (1 - Math.cos(Math.atan(1 / Math.cos(theta))));
if (cosphi < -1) {
cosphi = -1;
} else if (cosphi > 1) {
cosphi = 1;
}
/* Apply the result to the real area on the cube face.
* For the top and bottom face, we can compute phi and lam directly.
* For the other faces, we must use unit sphere cartesian coordinates
* as an intermediate step. */
if (this.face === FACE_ENUM.TOP) {
phi = Math.acos(cosphi);
lp.phi = HALF_PI - phi;
if (area.value === AREA_ENUM.AREA_0) {
lp.lam = theta + HALF_PI;
} else if (area.value === AREA_ENUM.AREA_1) {
lp.lam = (theta < 0.0 ? theta + SPI : theta - SPI);
} else if (area.value === AREA_ENUM.AREA_2) {
lp.lam = theta - HALF_PI;
} else /* area.value == AREA_ENUM.AREA_3 */ {
lp.lam = theta;
}
} else if (this.face === FACE_ENUM.BOTTOM) {
phi = Math.acos(cosphi);
lp.phi = phi - HALF_PI;
if (area.value === AREA_ENUM.AREA_0) {
lp.lam = -theta + HALF_PI;
} else if (area.value === AREA_ENUM.AREA_1) {
lp.lam = -theta;
} else if (area.value === AREA_ENUM.AREA_2) {
lp.lam = -theta - HALF_PI;
} else /* area.value == AREA_ENUM.AREA_3 */ {
lp.lam = (theta < 0.0 ? -theta - SPI : -theta + SPI);
}
} else {
/* Compute phi and lam via cartesian unit sphere coordinates. */
var q, r, s;
q = cosphi;
t = q * q;
if (t >= 1) {
s = 0;
} else {
s = Math.sqrt(1 - t) * Math.sin(theta);
}
t += s * s;
if (t >= 1) {
r = 0;
} else {
r = Math.sqrt(1 - t);
}
/* Rotate q,r,s into the correct area. */
if (area.value === AREA_ENUM.AREA_1) {
t = r;
r = -s;
s = t;
} else if (area.value === AREA_ENUM.AREA_2) {
r = -r;
s = -s;
} else if (area.value === AREA_ENUM.AREA_3) {
t = r;
r = s;
s = -t;
}
/* Rotate q,r,s into the correct cube face. */
if (this.face === FACE_ENUM.RIGHT) {
t = q;
q = -r;
r = t;
} else if (this.face === FACE_ENUM.BACK) {
q = -q;
r = -r;
} else if (this.face === FACE_ENUM.LEFT) {
t = q;
q = r;
r = -t;
}
/* Now compute phi and lam from the unit sphere coordinates. */
lp.phi = Math.acos(-s) - HALF_PI;
lp.lam = Math.atan2(r, q);
if (this.face === FACE_ENUM.RIGHT) {
lp.lam = qsc_shift_lon_origin(lp.lam, -HALF_PI);
} else if (this.face === FACE_ENUM.BACK) {
lp.lam = qsc_shift_lon_origin(lp.lam, -SPI);
} else if (this.face === FACE_ENUM.LEFT) {
lp.lam = qsc_shift_lon_origin(lp.lam, +HALF_PI);
}
}
/* Apply the shift from the sphere to the ellipsoid as described
* in [LK12]. */
if (this.es !== 0) {
var invert_sign;
var tanphi, xa;
invert_sign = (lp.phi < 0 ? 1 : 0);
tanphi = Math.tan(lp.phi);
xa = this.b / Math.sqrt(tanphi * tanphi + this.one_minus_f_squared);
lp.phi = Math.atan(Math.sqrt(this.a * this.a - xa * xa) / (this.one_minus_f * xa));
if (invert_sign) {
lp.phi = -lp.phi;
}
}
lp.lam += this.long0;
p.x = lp.lam;
p.y = lp.phi;
return p;
}
/* Helper function for forward projection: compute the theta angle
* and determine the area number. */
function qsc_fwd_equat_face_theta(phi, y, x, area) {
var theta;
if (phi < EPSLN) {
area.value = AREA_ENUM.AREA_0;
theta = 0.0;
} else {
theta = Math.atan2(y, x);
if (Math.abs(theta) <= FORTPI) {
area.value = AREA_ENUM.AREA_0;
} else if (theta > FORTPI && theta <= HALF_PI + FORTPI) {
area.value = AREA_ENUM.AREA_1;
theta -= HALF_PI;
} else if (theta > HALF_PI + FORTPI || theta <= -(HALF_PI + FORTPI)) {
area.value = AREA_ENUM.AREA_2;
theta = (theta >= 0.0 ? theta - SPI : theta + SPI);
} else {
area.value = AREA_ENUM.AREA_3;
theta += HALF_PI;
}
}
return theta;
}
/* Helper function: shift the longitude. */
function qsc_shift_lon_origin(lon, offset) {
var slon = lon + offset;
if (slon < -SPI) {
slon += TWO_PI;
} else if (slon > +SPI) {
slon -= TWO_PI;
}
return slon;
}
var names$6 = ["Quadrilateralized Spherical Cube", "Quadrilateralized_Spherical_Cube", "qsc"];
var qsc = {
init: init$6,
forward: forward$5,
inverse: inverse$5,
names: names$6
};
// Robinson projection
// Based on https://github.com/OSGeo/proj.4/blob/master/src/PJ_robin.c
// Polynomial coeficients from http://article.gmane.org/gmane.comp.gis.proj-4.devel/6039
var COEFS_X = [
[1.0000, 2.2199e-17, -715515e-10, 3.1103e-06],
[0.9986, -482243e-9, -24897e-9, -13309e-10],
[0.9954, -83103e-8, -448605e-10, -9.86701e-7],
[0.9900, -135364e-8, -59661e-9, 3.6777e-06],
[0.9822, -167442e-8, -449547e-11, -572411e-11],
[0.9730, -214868e-8, -903571e-10, 1.8736e-08],
[0.9600, -305085e-8, -900761e-10, 1.64917e-06],
[0.9427, -382792e-8, -653386e-10, -26154e-10],
[0.9216, -467746e-8, -10457e-8, 4.81243e-06],
[0.8962, -536223e-8, -323831e-10, -543432e-11],
[0.8679, -609363e-8, -113898e-9, 3.32484e-06],
[0.8350, -698325e-8, -640253e-10, 9.34959e-07],
[0.7986, -755338e-8, -500009e-10, 9.35324e-07],
[0.7597, -798324e-8, -35971e-9, -227626e-11],
[0.7186, -851367e-8, -701149e-10, -86303e-10],
[0.6732, -986209e-8, -199569e-9, 1.91974e-05],
[0.6213, -0.010418, 8.83923e-05, 6.24051e-06],
[0.5722, -906601e-8, 0.000182, 6.24051e-06],
[0.5322, -677797e-8, 0.000275608, 6.24051e-06]
];
var COEFS_Y = [
[-520417e-23, 0.0124, 1.21431e-18, -845284e-16],
[0.0620, 0.0124, -1.26793e-9, 4.22642e-10],
[0.1240, 0.0124, 5.07171e-09, -1.60604e-9],
[0.1860, 0.0123999, -1.90189e-8, 6.00152e-09],
[0.2480, 0.0124002, 7.10039e-08, -2.24e-8],
[0.3100, 0.0123992, -2.64997e-7, 8.35986e-08],
[0.3720, 0.0124029, 9.88983e-07, -3.11994e-7],
[0.4340, 0.0123893, -369093e-11, -4.35621e-7],
[0.4958, 0.0123198, -102252e-10, -3.45523e-7],
[0.5571, 0.0121916, -154081e-10, -5.82288e-7],
[0.6176, 0.0119938, -241424e-10, -5.25327e-7],
[0.6769, 0.011713, -320223e-10, -5.16405e-7],
[0.7346, 0.0113541, -397684e-10, -6.09052e-7],
[0.7903, 0.0109107, -489042e-10, -104739e-11],
[0.8435, 0.0103431, -64615e-9, -1.40374e-9],
[0.8936, 0.00969686, -64636e-9, -8547e-9],
[0.9394, 0.00840947, -192841e-9, -42106e-10],
[0.9761, 0.00616527, -256e-6, -42106e-10],
[1.0000, 0.00328947, -319159e-9, -42106e-10]
];
var FXC = 0.8487;
var FYC = 1.3523;
var C1 = R2D/5; // rad to 5-degree interval
var RC1 = 1/C1;
var NODES = 18;
var poly3_val = function(coefs, x) {
return coefs[0] + x * (coefs[1] + x * (coefs[2] + x * coefs[3]));
};
var poly3_der = function(coefs, x) {
return coefs[1] + x * (2 * coefs[2] + x * 3 * coefs[3]);
};
function newton_rapshon(f_df, start, max_err, iters) {
var x = start;
for (; iters; --iters) {
var upd = f_df(x);
x -= upd;
if (Math.abs(upd) < max_err) {
break;
}
}
return x;
}
function init$5() {
this.x0 = this.x0 || 0;
this.y0 = this.y0 || 0;
this.long0 = this.long0 || 0;
this.es = 0;
this.title = this.title || "Robinson";
}
function forward$4(ll) {
var lon = adjust_lon(ll.x - this.long0);
var dphi = Math.abs(ll.y);
var i = Math.floor(dphi * C1);
if (i < 0) {
i = 0;
} else if (i >= NODES) {
i = NODES - 1;
}
dphi = R2D * (dphi - RC1 * i);
var xy = {
x: poly3_val(COEFS_X[i], dphi) * lon,
y: poly3_val(COEFS_Y[i], dphi)
};
if (ll.y < 0) {
xy.y = -xy.y;
}
xy.x = xy.x * this.a * FXC + this.x0;
xy.y = xy.y * this.a * FYC + this.y0;
return xy;
}
function inverse$4(xy) {
var ll = {
x: (xy.x - this.x0) / (this.a * FXC),
y: Math.abs(xy.y - this.y0) / (this.a * FYC)
};
if (ll.y >= 1) { // pathologic case
ll.x /= COEFS_X[NODES][0];
ll.y = xy.y < 0 ? -HALF_PI : HALF_PI;
} else {
// find table interval
var i = Math.floor(ll.y * NODES);
if (i < 0) {
i = 0;
} else if (i >= NODES) {
i = NODES - 1;
}
for (;;) {
if (COEFS_Y[i][0] > ll.y) {
--i;
} else if (COEFS_Y[i+1][0] <= ll.y) {
++i;
} else {
break;
}
}
// linear interpolation in 5 degree interval
var coefs = COEFS_Y[i];
var t = 5 * (ll.y - coefs[0]) / (COEFS_Y[i+1][0] - coefs[0]);
// find t so that poly3_val(coefs, t) = ll.y
t = newton_rapshon(function(x) {
return (poly3_val(coefs, x) - ll.y) / poly3_der(coefs, x);
}, t, EPSLN, 100);
ll.x /= poly3_val(COEFS_X[i], t);
ll.y = (5 * i + t) * D2R$1;
if (xy.y < 0) {
ll.y = -ll.y;
}
}
ll.x = adjust_lon(ll.x + this.long0);
return ll;
}
var names$5 = ["Robinson", "robin"];
var robin = {
init: init$5,
forward: forward$4,
inverse: inverse$4,
names: names$5
};
function init$4() {
this.name = 'geocent';
}
function forward$3(p) {
var point = geodeticToGeocentric(p, this.es, this.a);
return point;
}
function inverse$3(p) {
var point = geocentricToGeodetic(p, this.es, this.a, this.b);
return point;
}
var names$4 = ["Geocentric", 'geocentric', "geocent", "Geocent"];
var geocent = {
init: init$4,
forward: forward$3,
inverse: inverse$3,
names: names$4
};
var mode = {
N_POLE: 0,
S_POLE: 1,
EQUIT: 2,
OBLIQ: 3
};
var params = {
h: { def: 100000, num: true }, // default is Karman line, no default in PROJ.7
azi: { def: 0, num: true, degrees: true }, // default is North
tilt: { def: 0, num: true, degrees: true }, // default is Nadir
long0: { def: 0, num: true }, // default is Greenwich, conversion to rad is automatic
lat0: { def: 0, num: true } // default is Equator, conversion to rad is automatic
};
function init$3() {
Object.keys(params).forEach(function (p) {
if (typeof this[p] === "undefined") {
this[p] = params[p].def;
} else if (params[p].num && isNaN(this[p])) {
throw new Error("Invalid parameter value, must be numeric " + p + " = " + this[p]);
} else if (params[p].num) {
this[p] = parseFloat(this[p]);
}
if (params[p].degrees) {
this[p] = this[p] * D2R$1;
}
}.bind(this));
if (Math.abs((Math.abs(this.lat0) - HALF_PI)) < EPSLN) {
this.mode = this.lat0 < 0 ? mode.S_POLE : mode.N_POLE;
} else if (Math.abs(this.lat0) < EPSLN) {
this.mode = mode.EQUIT;
} else {
this.mode = mode.OBLIQ;
this.sinph0 = Math.sin(this.lat0);
this.cosph0 = Math.cos(this.lat0);
}
this.pn1 = this.h / this.a; // Normalize relative to the Earth's radius
if (this.pn1 <= 0 || this.pn1 > 1e10) {
throw new Error("Invalid height");
}
this.p = 1 + this.pn1;
this.rp = 1 / this.p;
this.h1 = 1 / this.pn1;
this.pfact = (this.p + 1) * this.h1;
this.es = 0;
var omega = this.tilt;
var gamma = this.azi;
this.cg = Math.cos(gamma);
this.sg = Math.sin(gamma);
this.cw = Math.cos(omega);
this.sw = Math.sin(omega);
}
function forward$2(p) {
p.x -= this.long0;
var sinphi = Math.sin(p.y);
var cosphi = Math.cos(p.y);
var coslam = Math.cos(p.x);
var x, y;
switch (this.mode) {
case mode.OBLIQ:
y = this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
break;
case mode.EQUIT:
y = cosphi * coslam;
break;
case mode.S_POLE:
y = -sinphi;
break;
case mode.N_POLE:
y = sinphi;
break;
}
y = this.pn1 / (this.p - y);
x = y * cosphi * Math.sin(p.x);
switch (this.mode) {
case mode.OBLIQ:
y *= this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
break;
case mode.EQUIT:
y *= sinphi;
break;
case mode.N_POLE:
y *= -(cosphi * coslam);
break;
case mode.S_POLE:
y *= cosphi * coslam;
break;
}
// Tilt
var yt, ba;
yt = y * this.cg + x * this.sg;
ba = 1 / (yt * this.sw * this.h1 + this.cw);
x = (x * this.cg - y * this.sg) * this.cw * ba;
y = yt * ba;
p.x = x * this.a;
p.y = y * this.a;
return p;
}
function inverse$2(p) {
p.x /= this.a;
p.y /= this.a;
var r = { x: p.x, y: p.y };
// Un-Tilt
var bm, bq, yt;
yt = 1 / (this.pn1 - p.y * this.sw);
bm = this.pn1 * p.x * yt;
bq = this.pn1 * p.y * this.cw * yt;
p.x = bm * this.cg + bq * this.sg;
p.y = bq * this.cg - bm * this.sg;
var rh = hypot(p.x, p.y);
if (Math.abs(rh) < EPSLN) {
r.x = 0;
r.y = p.y;
} else {
var cosz, sinz;
sinz = 1 - rh * rh * this.pfact;
sinz = (this.p - Math.sqrt(sinz)) / (this.pn1 / rh + rh / this.pn1);
cosz = Math.sqrt(1 - sinz * sinz);
switch (this.mode) {
case mode.OBLIQ:
r.y = Math.asin(cosz * this.sinph0 + p.y * sinz * this.cosph0 / rh);
p.y = (cosz - this.sinph0 * Math.sin(r.y)) * rh;
p.x *= sinz * this.cosph0;
break;
case mode.EQUIT:
r.y = Math.asin(p.y * sinz / rh);
p.y = cosz * rh;
p.x *= sinz;
break;
case mode.N_POLE:
r.y = Math.asin(cosz);
p.y = -p.y;
break;
case mode.S_POLE:
r.y = -Math.asin(cosz);
break;
}
r.x = Math.atan2(p.x, p.y);
}
p.x = r.x + this.long0;
p.y = r.y;
return p;
}
var names$3 = ["Tilted_Perspective", "tpers"];
var tpers = {
init: init$3,
forward: forward$2,
inverse: inverse$2,
names: names$3
};
function init$2() {
this.flip_axis = (this.sweep === 'x' ? 1 : 0);
this.h = Number(this.h);
this.radius_g_1 = this.h / this.a;
if (this.radius_g_1 <= 0 || this.radius_g_1 > 1e10) {
throw new Error();
}
this.radius_g = 1.0 + this.radius_g_1;
this.C = this.radius_g * this.radius_g - 1.0;
if (this.es !== 0.0) {
var one_es = 1.0 - this.es;
var rone_es = 1 / one_es;
this.radius_p = Math.sqrt(one_es);
this.radius_p2 = one_es;
this.radius_p_inv2 = rone_es;
this.shape = 'ellipse'; // Use as a condition in the forward and inverse functions.
} else {
this.radius_p = 1.0;
this.radius_p2 = 1.0;
this.radius_p_inv2 = 1.0;
this.shape = 'sphere'; // Use as a condition in the forward and inverse functions.
}
if (!this.title) {
this.title = "Geostationary Satellite View";
}
}
function forward$1(p) {
var lon = p.x;
var lat = p.y;
var tmp, v_x, v_y, v_z;
lon = lon - this.long0;
if (this.shape === 'ellipse') {
lat = Math.atan(this.radius_p2 * Math.tan(lat));
var r = this.radius_p / hypot(this.radius_p * Math.cos(lat), Math.sin(lat));
v_x = r * Math.cos(lon) * Math.cos(lat);
v_y = r * Math.sin(lon) * Math.cos(lat);
v_z = r * Math.sin(lat);
if (((this.radius_g - v_x) * v_x - v_y * v_y - v_z * v_z * this.radius_p_inv2) < 0.0) {
p.x = Number.NaN;
p.y = Number.NaN;
return p;
}
tmp = this.radius_g - v_x;
if (this.flip_axis) {
p.x = this.radius_g_1 * Math.atan(v_y / hypot(v_z, tmp));
p.y = this.radius_g_1 * Math.atan(v_z / tmp);
} else {
p.x = this.radius_g_1 * Math.atan(v_y / tmp);
p.y = this.radius_g_1 * Math.atan(v_z / hypot(v_y, tmp));
}
} else if (this.shape === 'sphere') {
tmp = Math.cos(lat);
v_x = Math.cos(lon) * tmp;
v_y = Math.sin(lon) * tmp;
v_z = Math.sin(lat);
tmp = this.radius_g - v_x;
if (this.flip_axis) {
p.x = this.radius_g_1 * Math.atan(v_y / hypot(v_z, tmp));
p.y = this.radius_g_1 * Math.atan(v_z / tmp);
} else {
p.x = this.radius_g_1 * Math.atan(v_y / tmp);
p.y = this.radius_g_1 * Math.atan(v_z / hypot(v_y, tmp));
}
}
p.x = p.x * this.a;
p.y = p.y * this.a;
return p;
}
function inverse$1(p) {
var v_x = -1;
var v_y = 0.0;
var v_z = 0.0;
var a, b, det, k;
p.x = p.x / this.a;
p.y = p.y / this.a;
if (this.shape === 'ellipse') {
if (this.flip_axis) {
v_z = Math.tan(p.y / this.radius_g_1);
v_y = Math.tan(p.x / this.radius_g_1) * hypot(1.0, v_z);
} else {
v_y = Math.tan(p.x / this.radius_g_1);
v_z = Math.tan(p.y / this.radius_g_1) * hypot(1.0, v_y);
}
var v_zp = v_z / this.radius_p;
a = v_y * v_y + v_zp * v_zp + v_x * v_x;
b = 2 * this.radius_g * v_x;
det = (b * b) - 4 * a * this.C;
if (det < 0.0) {
p.x = Number.NaN;
p.y = Number.NaN;
return p;
}
k = (-b - Math.sqrt(det)) / (2.0 * a);
v_x = this.radius_g + k * v_x;
v_y *= k;
v_z *= k;
p.x = Math.atan2(v_y, v_x);
p.y = Math.atan(v_z * Math.cos(p.x) / v_x);
p.y = Math.atan(this.radius_p_inv2 * Math.tan(p.y));
} else if (this.shape === 'sphere') {
if (this.flip_axis) {
v_z = Math.tan(p.y / this.radius_g_1);
v_y = Math.tan(p.x / this.radius_g_1) * Math.sqrt(1.0 + v_z * v_z);
} else {
v_y = Math.tan(p.x / this.radius_g_1);
v_z = Math.tan(p.y / this.radius_g_1) * Math.sqrt(1.0 + v_y * v_y);
}
a = v_y * v_y + v_z * v_z + v_x * v_x;
b = 2 * this.radius_g * v_x;
det = (b * b) - 4 * a * this.C;
if (det < 0.0) {
p.x = Number.NaN;
p.y = Number.NaN;
return p;
}
k = (-b - Math.sqrt(det)) / (2.0 * a);
v_x = this.radius_g + k * v_x;
v_y *= k;
v_z *= k;
p.x = Math.atan2(v_y, v_x);
p.y = Math.atan(v_z * Math.cos(p.x) / v_x);
}
p.x = p.x + this.long0;
return p;
}
var names$2 = ["Geostationary Satellite View", "Geostationary_Satellite", "geos"];
var geos = {
init: init$2,
forward: forward$1,
inverse: inverse$1,
names: names$2,
};
/**
* Copyright 2018 Bernie Jenny, Monash University, Melbourne, Australia.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Equal Earth is a projection inspired by the Robinson projection, but unlike
* the Robinson projection retains the relative size of areas. The projection
* was designed in 2018 by Bojan Savric, Tom Patterson and Bernhard Jenny.
*
* Publication:
* Bojan Savric, Tom Patterson & Bernhard Jenny (2018). The Equal Earth map
* projection, International Journal of Geographical Information Science,
* DOI: 10.1080/13658816.2018.1504949
*
* Code released August 2018
* Ported to JavaScript and adapted for mapshaper-proj by Matthew Bloch August 2018
* Modified for proj4js by Andreas Hocevar by Andreas Hocevar March 2024
*/
var A1 = 1.340264,
A2 = -0.081106,
A3 = 0.000893,
A4 = 0.003796,
M = Math.sqrt(3) / 2.0;
function init$1() {
this.es = 0;
this.long0 = this.long0 !== undefined ? this.long0 : 0;
}
function forward(p) {
var lam = adjust_lon(p.x - this.long0);
var phi = p.y;
var paramLat = Math.asin(M * Math.sin(phi)),
paramLatSq = paramLat * paramLat,
paramLatPow6 = paramLatSq * paramLatSq * paramLatSq;
p.x = lam * Math.cos(paramLat) /
(M * (A1 + 3 * A2 * paramLatSq + paramLatPow6 * (7 * A3 + 9 * A4 * paramLatSq)));
p.y = paramLat * (A1 + A2 * paramLatSq + paramLatPow6 * (A3 + A4 * paramLatSq));
p.x = this.a * p.x + this.x0;
p.y = this.a * p.y + this.y0;
return p;
}
function inverse(p) {
p.x = (p.x - this.x0) / this.a;
p.y = (p.y - this.y0) / this.a;
var EPS = 1e-9,
NITER = 12,
paramLat = p.y,
paramLatSq, paramLatPow6, fy, fpy, dlat, i;
for (i = 0; i < NITER; ++i) {
paramLatSq = paramLat * paramLat;
paramLatPow6 = paramLatSq * paramLatSq * paramLatSq;
fy = paramLat * (A1 + A2 * paramLatSq + paramLatPow6 * (A3 + A4 * paramLatSq)) - p.y;
fpy = A1 + 3 * A2 * paramLatSq + paramLatPow6 * (7 * A3 + 9 * A4 * paramLatSq);
paramLat -= dlat = fy / fpy;
if (Math.abs(dlat) < EPS) {
break;
}
}
paramLatSq = paramLat * paramLat;
paramLatPow6 = paramLatSq * paramLatSq * paramLatSq;
p.x = M * p.x * (A1 + 3 * A2 * paramLatSq + paramLatPow6 * (7 * A3 + 9 * A4 * paramLatSq)) /
Math.cos(paramLat);
p.y = Math.asin(Math.sin(paramLat) / M);
p.x = adjust_lon(p.x + this.long0);
return p;
}
var names$1 = ["eqearth", "Equal Earth", "Equal_Earth"];
var eqearth = {
init: init$1,
forward: forward,
inverse: inverse,
names: names$1
};
var EPS10 = 1e-10;
function init() {
var c;
this.phi1 = this.lat1;
if (Math.abs(this.phi1) < EPS10) {
throw new Error();
}
if (this.es) {
this.en = pj_enfn(this.es);
this.m1 = pj_mlfn(this.phi1, this.am1 = Math.sin(this.phi1),
c = Math.cos(this.phi1), this.en);
this.am1 = c / (Math.sqrt(1 - this.es * this.am1 * this.am1) * this.am1);
this.inverse = e_inv;
this.forward = e_fwd;
} else {
if (Math.abs(this.phi1) + EPS10 >= HALF_PI) {
this.cphi1 = 0;
}
else {
this.cphi1 = 1 / Math.tan(this.phi1);
}
this.inverse = s_inv;
this.forward = s_fwd;
}
}
function e_fwd(p) {
var lam = adjust_lon(p.x - (this.long0 || 0));
var phi = p.y;
var rh, E, c;
rh = this.am1 + this.m1 - pj_mlfn(phi, E = Math.sin(phi), c = Math.cos(phi), this.en);
E = c * lam / (rh * Math.sqrt(1 - this.es * E * E));
p.x = rh * Math.sin(E);
p.y = this.am1 - rh * Math.cos(E);
p.x = this.a * p.x + (this.x0 || 0);
p.y = this.a * p.y + (this.y0 || 0);
return p;
}
function e_inv(p) {
p.x = (p.x - (this.x0 || 0)) / this.a;
p.y = (p.y - (this.y0 || 0)) / this.a;
var s, rh, lam, phi;
rh = hypot(p.x, p.y = this.am1 - p.y);
phi = pj_inv_mlfn(this.am1 + this.m1 - rh, this.es, this.en);
if ((s = Math.abs(phi)) < HALF_PI) {
s = Math.sin(phi);
lam = rh * Math.atan2(p.x, p.y) * Math.sqrt(1 - this.es * s * s) / Math.cos(phi);
} else if (Math.abs(s - HALF_PI) <= EPS10) {
lam = 0;
}
else {
throw new Error();
}
p.x = adjust_lon(lam + (this.long0 || 0));
p.y = adjust_lat(phi);
return p;
}
function s_fwd(p) {
var lam = adjust_lon(p.x - (this.long0 || 0));
var phi = p.y;
var E, rh;
rh = this.cphi1 + this.phi1 - phi;
if (Math.abs(rh) > EPS10) {
p.x = rh * Math.sin(E = lam * Math.cos(phi) / rh);
p.y = this.cphi1 - rh * Math.cos(E);
} else {
p.x = p.y = 0;
}
p.x = this.a * p.x + (this.x0 || 0);
p.y = this.a * p.y + (this.y0 || 0);
return p;
}
function s_inv(p) {
p.x = (p.x - (this.x0 || 0)) / this.a;
p.y = (p.y - (this.y0 || 0)) / this.a;
var lam, phi;
var rh = hypot(p.x, p.y = this.cphi1 - p.y);
phi = this.cphi1 + this.phi1 - rh;
if (Math.abs(phi) > HALF_PI) {
throw new Error();
}
if (Math.abs(Math.abs(phi) - HALF_PI) <= EPS10) {
lam = 0;
} else {
lam = rh * Math.atan2(p.x, p.y) / Math.cos(phi);
}
p.x = adjust_lon(lam + (this.long0 || 0));
p.y = adjust_lat(phi);
return p;
}
var names = ["bonne", "Bonne (Werner lat_1=90)"];
var bonne = {
init: init,
names: names
};
function includedProjections(proj4){
proj4.Proj.projections.add(tmerc);
proj4.Proj.projections.add(etmerc);
proj4.Proj.projections.add(utm);
proj4.Proj.projections.add(sterea);
proj4.Proj.projections.add(stere);
proj4.Proj.projections.add(somerc);
proj4.Proj.projections.add(omerc);
proj4.Proj.projections.add(lcc);
proj4.Proj.projections.add(krovak);
proj4.Proj.projections.add(cass);
proj4.Proj.projections.add(laea);
proj4.Proj.projections.add(aea);
proj4.Proj.projections.add(gnom);
proj4.Proj.projections.add(cea);
proj4.Proj.projections.add(eqc);
proj4.Proj.projections.add(poly);
proj4.Proj.projections.add(nzmg);
proj4.Proj.projections.add(mill);
proj4.Proj.projections.add(sinu);
proj4.Proj.projections.add(moll);
proj4.Proj.projections.add(eqdc);
proj4.Proj.projections.add(vandg);
proj4.Proj.projections.add(aeqd);
proj4.Proj.projections.add(ortho);
proj4.Proj.projections.add(qsc);
proj4.Proj.projections.add(robin);
proj4.Proj.projections.add(geocent);
proj4.Proj.projections.add(tpers);
proj4.Proj.projections.add(geos);
proj4.Proj.projections.add(eqearth);
proj4.Proj.projections.add(bonne);
}
proj4.defaultDatum = 'WGS84'; //default datum
proj4.Proj = Projection;
proj4.WGS84 = new proj4.Proj('WGS84');
proj4.Point = Point;
proj4.toPoint = common;
proj4.defs = defs;
proj4.nadgrid = nadgrid;
proj4.transform = transform;
proj4.mgrs = mgrs;
proj4.version = '__VERSION__';
includedProjections(proj4);
const WME_LAYER_NAMES = {
NODES: "nodes",
SEGMENTS: "segments",
VENUES: "venues"
};
const sScriptName = GM_info.script.name;
GM_info.script.version;
let wmeSDK;
let _settings = {};
const _SETTINGS_STORAGE_NAME = "wme-ut-kadastrs";
const mDefaultScriptSettings = {
checkOutdoorsFeatures: false,
validateKorpussInHN: true
};
const aExcludedFeatures = [
"PARK",
"PLAYGROUND",
"BEACH",
"SPORTS_COURT",
"GOLF_COURSE",
"PLAZA",
"PROMENADE",
"POOL",
"SCENIC_LOOKOUT_VIEWPOINT",
"SKI_AREA",
"ISLAND",
"SEA_LAKE_POOL",
"RIVER_STREAM",
"FOREST_GROVE",
"FARM",
"CANAL",
"SWAMP_MARSH",
"DAM"
];
let aFeaturesForLayerNewSDK = [];
let aSDKWazeHouseNumbers = [];
let aGreenHighlightVenues = [];
let aGreenDashedHighlightVenues = [];
let aYellowHighlightVenues = [];
let aYellowDashedHighlightVenues = [];
let aRedHighlightVenues = [];
let aRedDashedHighlightVenues = [];
let aAllFetchedWazeVenues;
let aInvalidWazeVenues;
let aInvalidWazeVenues2;
let aAllKadastrsFetchedAddresses_11 = [];
let aWMEValidAddressVenues = [];
let aWMEPolygonHighlightBlueFeatures = [];
let aFetchedAddressesNotPresentInWME_21 = [];
let iPopupTimeout;
let $KadastrsMenuPopupDiv;
let aVasarnicas = [];
let mKadastrsFeaturesData = {};
function fetchSheetData() {
const SHEET_ID = "1W230EX3e0ECeF44Ls0GtvI_Iwn9tceidJYT7T4vjJJw";
const SHEET_NAME = "Sheet1";
const url = `https://docs.google.com/spreadsheets/d/${SHEET_ID}/gviz/tq?tqx=out:csv&sheet=${SHEET_NAME}`;
GM_xmlhttpRequest({
method: "GET",
url: url,
onload: response => {
if (response.status === 200) {
const csvData = response.responseText;
const aRows = csvData.trim().split("\n");
const aParsedResult = aRows.slice(1).map(row => {
const aCols = row.match(/(".*?"|[^",]+)(?=\s*,|\s*$)/g) || [];
return {
name: aCols[0].replace(/^"(.*)"$/, "$1").trim(),
parent: aCols[1].replace(/^"(.*)"$/, "$1").trim()
};
});
aVasarnicas = aParsedResult;
}
else {
console.error("Failed to fetch data:", response);
}
}
});
}
function createElem(type, attrs = {}, eventListener = {}) {
const oElement = document.createElement(type);
for (const [sKey, vValue] of Object.entries(attrs)) {
if (sKey in oElement) {
oElement[sKey] = vValue;
}
else if (sKey === "classList" && Array.isArray(vValue)) {
oElement.classList.add(...vValue);
}
else {
oElement.setAttribute(sKey, vValue);
}
}
for (const [sEventType, fnHandler] of Object.entries(eventListener)) {
if (fnHandler) {
oElement.addEventListener(sEventType, fnHandler);
}
}
return oElement;
}
function getOLMapExtent() {
let extent = W.map.getExtent();
if (Array.isArray(extent)) {
extent = new OpenLayers.Bounds(extent);
}
return extent;
}
function addKFetchButton() {
const divOverlayMain = document.getElementById("overlay-buttons-region");
if (!divOverlayMain) {
return;
}
const mStyle = {
position: "absolute",
top: "0px",
right: "60px",
width: "44px",
zIndex: "1"
};
let mainDiv = document.getElementById("ursusButtonsMenu");
let btnDiv = mainDiv?.querySelector("div");
if (!btnDiv) {
btnDiv = createElem("div", {
classList: ["overlay-buttons-container top"]
});
}
if (!mainDiv) {
mainDiv = createElem("div", { id: "ursusButtonsMenu" });
Object.assign(mainDiv.style, mStyle);
mainDiv.appendChild(btnDiv);
divOverlayMain.appendChild(mainDiv);
}
const owz = createElem("wz-button", {
color: "clear-icon",
classList: ["overlay-button"],
disabled: "false"
}, { click: fetchKadastrsData });
const h6 = createElem("h6", {
classList: ["w-icon"],
textContent: "K"
});
h6.style["font-family"] = "Waze Boing Medium";
h6.style["line-height"] = "24px";
owz.appendChild(h6);
btnDiv.appendChild(owz);
}
function generateDomElements(aLayersConfig, oDOMContainer) {
aLayersConfig.forEach((mLayerConfig) => {
mLayerConfig.elements.forEach((item) => {
const $HTMLElement = createElem(item.type, item.attributes, item.events || []);
oDOMContainer.appendChild($HTMLElement);
if (item.triggerChangeEvent) {
$HTMLElement.dispatchEvent(new Event("change"));
}
});
console.log(`Elements for '${mLayerConfig.id}' created. URL: ${mLayerConfig.url}`);
const br = createElem("br");
oDOMContainer.append(br);
});
}
async function saveSettingsToStorage() {
if (localStorage) {
_settings.lastSaved = Date.now();
localStorage.setItem(_SETTINGS_STORAGE_NAME, JSON.stringify(_settings));
}
}
function cbLayerChange(oEvent) {
if (oEvent.target instanceof HTMLInputElement) {
const sSetting = oEvent.target.getAttribute("boundSetting");
if (sSetting) {
_settings[sSetting] = oEvent.target.checked;
}
saveSettingsToStorage();
}
}
async function initScriptTab() {
const { tabLabel, tabPane } = await wmeSDK.Sidebar.registerScriptTab();
tabLabel.innerText = "WME UT Kadastrs";
tabLabel.title = "WME UT Kadastrs";
const description = document.createElement("p");
description.style.fontWeight = "bold";
description.textContent = "WME UT Kadastrs";
tabPane.appendChild(description);
let buttonContainer = createElem("div", {
class: "controls-container"
});
const aSettingsConfig = [
{
id: "utk-checkOutdoorsFeatures",
elements: [
{
type: "input",
attributes: {
type: "checkbox",
id: "cbCheckOutdoorsFeatures",
title: "Check Outdoors and Natural Features",
checked: _settings.checkOutdoorsFeatures,
boundSetting: "checkOutdoorsFeatures"
},
events: {
change: cbLayerChange
},
triggerChangeEvent: false
},
{
type: "label",
attributes: {
for: "cbCheckOutdoorsFeatures",
textContent: "Check Outdoors and Natural Features"
}
}
]
},
{
id: "utk-validateKorpussInHN",
elements: [
{
type: "input",
attributes: {
type: "checkbox",
id: "cbValidateKorpussInHN",
title: "Check Outdoors and Natural Features",
checked: _settings.validateKorpussInHN,
boundSetting: "validateKorpussInHN"
},
events: {
change: cbLayerChange
},
triggerChangeEvent: false
},
{
type: "label",
attributes: {
for: "cbValidateKorpussInHN",
textContent: "Validate '-\\k-' in House Numbers"
}
}
]
}
];
generateDomElements(aSettingsConfig, buttonContainer);
const fnUndoEvilClick = () => {
wmeSDK.Editing.undoAll();
};
const fnEvilClick = async () => {
let aAllStrangeVenues = [...aInvalidWazeVenues2, ...aInvalidWazeVenues];
for (const oStrangeVenue of aAllStrangeVenues) {
if (oStrangeVenue.geometry.type !== "Polygon")
continue;
const oFoundKadastrsFeature = aFeaturesForLayerNewSDK.find(oKadastrsFeature => booleanWithin(oKadastrsFeature.geometry, oStrangeVenue.geometry));
if (!oFoundKadastrsFeature)
continue;
const WMEAddressParams = convertKadastrsAddressStringToParts(mKadastrsFeaturesData[oFoundKadastrsFeature.id].kadastrs_data, "waze");
if (!WMEAddressParams)
continue;
let bShouldUpdatePolygon = !(oStrangeVenue.streetID === WMEAddressParams.streetID &&
oStrangeVenue.houseNumber === WMEAddressParams.houseNumber);
const aFoundInvalidHN = aSDKWazeHouseNumbers.filter(oInvalidHN => {
const mSegStreet = wmeSDK.DataModel.Segments.getById({ segmentId: oInvalidHN.segmentId });
return (booleanWithin(oInvalidHN.geometry, oStrangeVenue.geometry) &&
(mSegStreet?.primaryStreetId !== WMEAddressParams.streetID ||
oInvalidHN.number !== WMEAddressParams.houseNumber));
});
if (aFoundInvalidHN.length === 1) {
const oExistingHNs = await wmeSDK.DataModel.HouseNumbers.fetchHouseNumbers({
segmentIds: [aFoundInvalidHN[0].segmentId]
});
let sHouseNumber = WMEAddressParams.houseNumber;
const bIsInUse = oExistingHNs.some(oExistingHN => oExistingHN.number === sHouseNumber);
if (bIsInUse) {
sHouseNumber += "utk";
}
await wmeSDK.DataModel.HouseNumbers.updateHouseNumber({
houseNumberId: aFoundInvalidHN[0].id,
number: sHouseNumber
});
WMEAddressParams.houseNumber = sHouseNumber;
WMEAddressParams.name = sHouseNumber;
}
const aFoundInvalidResidential = aAllStrangeVenues.filter(oInvalidWazeVenue => oInvalidWazeVenue.categories.length === 1 &&
oInvalidWazeVenue.categories[0] === "RESIDENCE_HOME" &&
booleanWithin(oInvalidWazeVenue.geometry, oStrangeVenue.geometry) &&
(oInvalidWazeVenue.segmentId !== WMEAddressParams.streetID ||
oInvalidWazeVenue.houseNumber !== WMEAddressParams.houseNumber));
if (aFoundInvalidResidential.length === 1) {
updateVenue(aFoundInvalidResidential[0].id, WMEAddressParams);
}
if (bShouldUpdatePolygon) {
updateVenue(oStrangeVenue.id, WMEAddressParams);
}
}
aInvalidWazeVenues = [];
aAllStrangeVenues = [];
};
const oEvilButton = createElem("button", {
classList: ["btn", "btn-default"],
title: "Evil Mode",
textContent: "Evil Mode"
}, { click: fnEvilClick });
buttonContainer.append(oEvilButton);
const oUndoButton = createElem("button", {
classList: ["btn", "btn-default"],
title: "Undo Changes",
textContent: "Undo"
}, { click: fnUndoEvilClick });
buttonContainer.append(oUndoButton);
tabPane.appendChild(buttonContainer);
wmeSDK.Map.addStyleRuleToLayer({
layerName: WME_LAYER_NAMES.VENUES,
styleRules: [
{
predicate: venue => aGreenHighlightVenues.includes(venue.id),
style: {
strokeColor: "green",
strokeWidth: 3
}
},
{
predicate: venue => aGreenDashedHighlightVenues.includes(venue.id),
style: {
strokeColor: "green",
strokeWidth: 3,
strokeDashstyle: "dashdot"
}
},
{
predicate: venue => aYellowHighlightVenues.includes(venue.id),
style: {
strokeColor: "orange",
strokeWidth: 3
}
},
{
predicate: venue => aYellowDashedHighlightVenues.includes(venue.id),
style: {
strokeColor: "orange",
strokeWidth: 3,
strokeDashstyle: "dashdot"
}
},
{
predicate: venue => aRedHighlightVenues.includes(venue.id),
style: {
strokeColor: "red",
strokeWidth: 3
}
},
{
predicate: venue => aRedDashedHighlightVenues.includes(venue.id),
style: {
strokeColor: "red",
strokeWidth: 3,
strokeDashstyle: "dashdot"
}
}
]
});
}
function readLocalSettings() {
const sStorageItem = localStorage.getItem(_SETTINGS_STORAGE_NAME);
if (sStorageItem) {
const loadedSettings = JSON.parse(sStorageItem);
_settings = { ...mDefaultScriptSettings, ...loadedSettings };
}
else {
_settings = mDefaultScriptSettings;
saveSettingsToStorage();
}
}
function initScript() {
if (!unsafeWindow.getWmeSdk) {
throw new Error("SDK not available");
}
wmeSDK = unsafeWindow.getWmeSdk({
scriptId: "wmeUTKadastrs",
scriptName: "UrSuS Tools: Kadastrs"
});
void readLocalSettings();
void initScriptTab();
if (typeof proj4 === "undefined") {
const oScript = document.createElement("script");
oScript.type = "text/javascript";
oScript.src = "https://cdnjs.cloudflare.com/ajax/libs/proj4js/2.4.4/proj4.js";
document.getElementsByTagName("head")[0].appendChild(oScript);
}
addKFetchButton();
fetchSheetData();
wmeSDK.Map.addLayer({
layerName: "wme-ut-kadastrs-hover",
styleContext: {
getLabel: ({ feature }) => feature?.properties.label ?? "",
getXOffset: ({ feature }) => feature?.properties.xOffset ?? 0,
getYOffset: ({ feature }) => feature?.properties.yOffset ?? 0
},
styleRules: [
{
style: {
fillColor: "#00695C",
fillOpacity: 0.5,
strokeWidth: 9,
strokeDashstyle: "longdashdot",
strokeColor: "red",
label: "",
labelYOffset: 45,
fontColor: "#FF0",
fontWeight: "bold",
labelOutlineColor: "#000",
labelOutlineWidth: 4,
fontSize: "18"
}
}
],
zIndexing: true
});
wmeSDK.Map.addLayer({
layerName: "wme-ut-kadastrs",
styleContext: {
getLabel: ({ feature }) => feature?.properties.label ?? "",
getXOffset: ({ feature }) => feature?.properties.xOffset ?? 0,
getYOffset: ({ feature }) => feature?.properties.yOffset ?? 0
},
styleRules: [
{
style: {
label: "K",
pointRadius: 12,
fillColor: "#00695C",
fillOpacity: 0.8,
fontColor: "black",
labelOutlineColor: "white",
labelOutlineWidth: 3,
strokeColor: "white"
}
}
],
zIndexing: true
});
wmeSDK.Map.addLayer({
layerName: "wme-ut-kadastrs-lines",
styleContext: {
getLabel: ({ feature }) => feature?.properties.label ?? "",
getXOffset: ({ feature }) => feature?.properties.xOffset ?? 0,
getYOffset: ({ feature }) => feature?.properties.yOffset ?? 0
},
styleRules: [
{
style: {
fillColor: "#00695C",
fillOpacity: 0.5,
strokeWidth: 3,
strokeDashstyle: "longdashdot",
strokeColor: "blue",
label: "",
labelYOffset: 45,
fontColor: "#FF0",
fontWeight: "bold",
labelOutlineColor: "#000",
labelOutlineWidth: 4,
fontSize: "18"
}
}
],
zIndexing: true
});
wmeSDK.Map.addLayer({
layerName: "wme-ut-kadastrs-highlights",
styleContext: {
getLabel: ({ feature }) => feature?.properties.label ?? "",
getXOffset: ({ feature }) => feature?.properties.xOffset ?? 0,
getYOffset: ({ feature }) => feature?.properties.yOffset ?? 0
},
styleRules: [
{
style: {
fillColor: "#00695C",
fillOpacity: 0.5,
strokeWidth: 9,
strokeDashstyle: "solid",
label: "",
labelYOffset: 45,
fontColor: "#FF0",
fontWeight: "bold",
labelOutlineColor: "#000",
labelOutlineWidth: 4,
fontSize: "18"
}
}
],
zIndexing: true
});
wmeSDK.Map.setLayerVisibility({
layerName: "wme-ut-kadastrs-hover",
visibility: true
});
wmeSDK.Map.setLayerVisibility({
layerName: "wme-ut-kadastrs-highlights",
visibility: true
});
wmeSDK.Events.trackLayerEvents({ layerName: "wme-ut-kadastrs" });
wmeSDK.Events.on({
eventName: "wme-layer-feature-mouse-enter",
eventHandler: onFeatureHoverEvent
});
wmeSDK.Events.on({
eventName: "wme-layer-feature-mouse-leave",
eventHandler: onFeatureUnHoverEvent
});
}
void unsafeWindow.SDK_INITIALIZED.then(initScript);
async function fetchKadastrsData() {
wazedevtoastr.options = {
closeButton: false,
debug: false,
newestOnTop: false,
progressBar: false,
rtl: false,
positionClass: "toast-bottom-center",
preventDuplicates: false,
onclick: null,
showDuration: 300,
hideDuration: 1000,
timeOut: 5000,
extendedTimeOut: 1000,
showEasing: "swing",
hideEasing: "linear",
showMethod: "fadeIn",
hideMethod: "fadeOut"
};
wmeSDK.Map.removeAllFeaturesFromLayer({ layerName: "wme-ut-kadastrs-highlights" });
if (wmeSDK.Map.getZoomLevel() < 17) {
WazeWrap.Alerts.warning(sScriptName, `You are on ${wmeSDK.Map.getZoomLevel()} Zoom Level, HouseNumbers won't be fetched!`);
}
WazeWrap.Alerts.info(sScriptName, "KadastrsAddress Fetching started");
aGreenHighlightVenues = [];
aYellowHighlightVenues = [];
aRedHighlightVenues = [];
aGreenDashedHighlightVenues = [];
aYellowDashedHighlightVenues = [];
aRedDashedHighlightVenues = [];
aInvalidWazeVenues = [];
let sURL = "https://lvmgeoserver.lvm.lv/geoserver/publicwfs/wfs?layer=publicwfs&SERVICE=WFS&REQUEST=GetFeature";
sURL +=
"&VERSION=2.0.0&TYPENAMES=publicwfs:arisbuilding&STARTINDEX=0&COUNT=500&SRSNAME=urn:ogc:def:crs:EPSG::3059&BBOX=";
sURL += getBBox3059();
sURL += ",urn:ogc:def:crs:EPSG::3059&outputFormat=application/json";
const sVenueResponseJSON = await makeGetRequest(sURL);
processFetchedDataNewMode(sVenueResponseJSON);
}
async function processFetchedDataNewMode(responseText) {
const oParser = new OpenLayers.Format.GeoJSON();
aAllKadastrsFetchedAddresses_11 = oParser.read(responseText);
WazeWrap.Alerts.info(sScriptName, `${aAllKadastrsFetchedAddresses_11.length} Kadastrs Address Fetched`);
let sWazeVenueURL = `https://${window.location.hostname}/row-Descartes/app/Features?bbox=${getBBoxv2()}`;
sWazeVenueURL += "&language=en-GB&v=2&venueLevel=4&venueFilter=1%2C1%2C0%2C0";
const sVenueResponseJSON = await makeGetRequest(sWazeVenueURL);
const oParsedObject = JSON.parse(sVenueResponseJSON);
aAllFetchedWazeVenues = oParsedObject.venues.objects;
aWMEValidAddressVenues = [];
aInvalidWazeVenues2 = [];
WazeWrap.Alerts.info(sScriptName, `${aAllFetchedWazeVenues.length} WME Venues Fetched`);
aSDKWazeHouseNumbers = [];
if (wmeSDK.Map.getZoomLevel() >= 17) {
const aSegments = wmeSDK.DataModel.Segments.getAll().filter((oObject) => oObject.hasHouseNumbers);
const mBBox = getOLMapExtent();
const oMapPoly = polygon([
[
[mBBox.left, mBBox.bottom],
[mBBox.right, mBBox.bottom],
[mBBox.right, mBBox.top],
[mBBox.left, mBBox.top],
[mBBox.left, mBBox.bottom]
]
]);
const aSegmentsOnScreen = aSegments
.filter(oSegment => booleanWithin(oSegment.geometry, oMapPoly) ||
booleanIntersects(oSegment.geometry, oMapPoly))
.map(oSegment => Number(oSegment.id));
const oResults = await wmeSDK.DataModel.HouseNumbers.fetchHouseNumbers({
segmentIds: aSegmentsOnScreen
});
aSDKWazeHouseNumbers = oResults;
}
aFetchedAddressesNotPresentInWME_21 = [];
aFetchedAddressesNotPresentInWME_21 = [...aAllKadastrsFetchedAddresses_11];
aAllFetchedWazeVenues.map((oVenue) => {
let { name: sStreetName, city: sCity } = findStreetName(oVenue.streetID);
let oAddressRegex;
if (!oVenue.houseNumber && sStreetName === "") {
if (oVenue.name) {
const sConverted = `"${oVenue.name.replace(", ", '", ')}${sCity !== "" ? '"' : ""}`;
oAddressRegex = getRegex([sConverted, sCity]);
}
}
else if (!oVenue.houseNumber) {
if (sStreetName.slice(-4) === "pag.") {
const aAddress = sStreetName.split(", ");
sStreetName = `"${aAddress[0]}", ${aAddress[1]}`;
}
else {
sStreetName = `"${sStreetName}"`;
}
oAddressRegex = getRegex([sStreetName, sCity]);
}
else {
let sHouseNumber = oVenue.houseNumber;
if (!_settings.validateKorpussInHN) {
sHouseNumber = oVenue.houseNumber.toUpperCase().replace("-", " k-");
}
const bIsVasarnica = aVasarnicas.some(mRecord => mRecord.name === sStreetName && mRecord.parent === sCity);
if (bIsVasarnica) {
oAddressRegex = getRegex([`"${sStreetName} ${sHouseNumber}"`, sCity]);
}
else {
oAddressRegex = getRegex([`${sStreetName} ${sHouseNumber}`, sCity]);
}
}
if (oAddressRegex) {
excludeKadastrsAddressConsistentWithWME(oAddressRegex, oVenue);
}
});
WazeWrap.Alerts.info(sScriptName, `${aFetchedAddressesNotPresentInWME_21.length} Kadastrs Addresses Not Present`);
const aKadastrsAddressesTypes = [];
const aConvertedAddresses = aAllKadastrsFetchedAddresses_11
.map(mRowKadastrsAddress => {
const mKadastrsAddress = convertKadastrsAddressStringToParts(mRowKadastrsAddress.attributes.std, "");
if (!mKadastrsAddress) {
return undefined;
}
aKadastrsAddressesTypes.push({
id: mRowKadastrsAddress.id,
is_vienseta: mKadastrsAddress.isVienseta,
is_vasarnica: mKadastrsAddress.isVasarnica
});
return {
cityName: mKadastrsAddress.cityName,
streetName: mKadastrsAddress.streetName,
houseNumber: mKadastrsAddress.houseNumber,
name: mKadastrsAddress.name,
cityId: "",
streetID: ""
};
})
.filter(oItem => !!oItem);
const iFailedAddressIndex = populateIds(aConvertedAddresses);
if (iFailedAddressIndex) {
const mMissingAddress = aAllKadastrsFetchedAddresses_11[iFailedAddressIndex];
const aLonLat = proj4("EPSG:3059", "EPSG:4326", [mMissingAddress.geometry.x, mMissingAddress.geometry.y]);
wmeSDK.Map.setMapCenter({
lonLat: { lon: aLonLat[0], lat: aLonLat[1] },
zoomLevel: 19
});
}
const aValidVenueIds = new Set(aWMEValidAddressVenues.map(v => v.id));
aInvalidWazeVenues = aAllFetchedWazeVenues.filter(venue => !aValidVenueIds.has(venue.id));
if (!_settings.validateKorpussInHN) {
aInvalidWazeVenues = aInvalidWazeVenues.filter(mVenue => {
return !aConvertedAddresses.some(mConvertedAddress => {
const sHN = mConvertedAddress.houseNumber.includes(" k-")
? mConvertedAddress.houseNumber.replace(" k-", "-")
: mConvertedAddress.houseNumber;
return (mVenue.streetID === mConvertedAddress.streetID &&
mVenue.houseNumber?.toUpperCase() === sHN.toUpperCase());
});
});
}
WazeWrap.Alerts.info(sScriptName, `${aInvalidWazeVenues.length} WME Venues with incorrect or missing Addresses`);
aSDKWazeHouseNumbers.map(oSDKWazeHouseNumber => {
const mSegStreet = wmeSDK.DataModel.Segments.getById({ segmentId: oSDKWazeHouseNumber.segmentId });
if (!mSegStreet?.primaryStreetId) {
return;
}
const { name: sStreetName, city: sCity } = findStreetName(mSegStreet.primaryStreetId);
const bIsVasarnica = aVasarnicas.some(mRecord => mRecord.name === sStreetName && mRecord.parent === sCity);
let oAddressRegex;
if (bIsVasarnica) {
oAddressRegex = getRegex([`"${sStreetName} ${oSDKWazeHouseNumber.number.toUpperCase()}"`, sCity]);
}
else {
oAddressRegex = getRegex([`${sStreetName} ${oSDKWazeHouseNumber.number.toUpperCase()}`, sCity]);
}
excludeKadastrsAddressConsistentWithWME(oAddressRegex, oSDKWazeHouseNumber);
});
addKadastrsLayerWithFeatures(aAllKadastrsFetchedAddresses_11, aKadastrsAddressesTypes);
if (!_settings.checkOutdoorsFeatures) {
aInvalidWazeVenues = aInvalidWazeVenues.filter(oVenue => !aExcludedFeatures.includes(oVenue.categories[0]));
}
const mBBox = getOLMapExtent();
const oMapPoly = polygon([
[
[mBBox.left, mBBox.bottom],
[mBBox.right, mBBox.bottom],
[mBBox.right, mBBox.top],
[mBBox.left, mBBox.top],
[mBBox.left, mBBox.bottom]
]
]);
const aInvalidVenuesFullyOnScreen = aInvalidWazeVenues.filter(oVenue => booleanWithin(oVenue.geometry, oMapPoly));
aInvalidVenuesFullyOnScreen.forEach(oWazeVenue => {
const id = oWazeVenue.id;
const polygonArea = area(oWazeVenue.geometry);
if (polygonArea > 510) {
aRedHighlightVenues.push(id);
}
else {
aRedDashedHighlightVenues.push(id);
}
});
aWMEValidAddressVenues.forEach(oWazeVenue => {
const oKadastrsFeature = Object.values(mKadastrsFeaturesData).find((mFeature) => mFeature.found_venues?.some(oVenue => oVenue.id === oWazeVenue.id));
if (oKadastrsFeature.found_hn?.length === 1 && oKadastrsFeature.found_residential?.length === 1) {
const polygonArea = area(oWazeVenue.geometry);
if (polygonArea > 510) {
aGreenHighlightVenues.push(oWazeVenue.id);
}
else {
aGreenDashedHighlightVenues.push(oWazeVenue.id);
}
}
else if (oKadastrsFeature.is_vienseta) {
const polygonArea = area(oWazeVenue.geometry);
if (polygonArea > 510) {
aGreenHighlightVenues.push(oWazeVenue.id);
}
else {
aGreenDashedHighlightVenues.push(oWazeVenue.id);
}
}
else {
const polygonArea = area(oWazeVenue.geometry);
if (polygonArea > 510) {
aYellowHighlightVenues.push(oWazeVenue.id);
}
else {
aYellowDashedHighlightVenues.push(oWazeVenue.id);
}
aInvalidWazeVenues2.push(oWazeVenue);
}
});
wmeSDK.Map.redrawLayer({ layerName: "venues" });
}
function addKadastrsLayerWithFeatures(aKadastrsFeatures, aKadastrsAddressesTypes) {
aFeaturesForLayerNewSDK = [];
mKadastrsFeaturesData = {};
aKadastrsFeatures.forEach(mFeature => {
const aCoords = proj4("EPSG:3059", "EPSG:900913", [mFeature.geometry.x, mFeature.geometry.y]);
mFeature.geometry.x = aCoords[0];
mFeature.geometry.y = aCoords[1];
let convertedGeometry = W.userscripts.toGeoJSONGeometry(mFeature.geometry).coordinates;
const mPointFeature = {
type: "Feature",
id: mFeature.id,
geometry: {
type: "Point",
coordinates: [convertedGeometry[0], convertedGeometry[1]]
}
};
aFeaturesForLayerNewSDK.push(mPointFeature);
const mType = aKadastrsAddressesTypes.find(mKadastrsAddressesType => mKadastrsAddressesType.id === mFeature.id);
mKadastrsFeaturesData[mPointFeature.id] = {
kadastrs_data: mFeature.attributes.std,
geometry: mPointFeature.geometry,
found_venues: mFeature.data.Venues,
found_residential: mFeature.data.Residential,
found_hn: mFeature.data.HN,
is_vienseta: mType.is_vienseta,
is_vasarnica: mType.is_vasarnica
};
});
wmeSDK.Map.addFeaturesToLayer({ features: aFeaturesForLayerNewSDK, layerName: "wme-ut-kadastrs" });
}
function checkTooltip() {
window.clearTimeout(iPopupTimeout);
}
function onFeatureHoverEvent(e) {
window.clearTimeout(iPopupTimeout);
const mKadastrsAddress = convertKadastrsAddressStringToParts(mKadastrsFeaturesData[e.featureId].kadastrs_data, "waze");
if (!mKadastrsAddress) {
return;
}
const placeGeom = mKadastrsFeaturesData[e.featureId].geometry;
if (!$KadastrsMenuPopupDiv) {
$KadastrsMenuPopupDiv = createElem("div", {
id: "kadastrsMenuDiv",
style: "z-index:9998; visibility:visible; position:absolute; margin: 0px; top: 0px; left: 0px;",
"data-tippy-root": false
}, { mouseenter: checkTooltip, mouseleave: hideTooltipAfterDelay });
Object.assign($KadastrsMenuPopupDiv.style, {
zIndex: 9998,
visibility: "visible",
position: "absolute",
margin: "0px",
top: "0px",
left: "0px"
});
W.map.getEl()[0].appendChild($KadastrsMenuPopupDiv);
}
const divElemRoot = createElem("div", {
id: "kadastrsMenuDiv-tooltip",
classList: ["tippy-box"],
"data-state": "hidden",
tabindex: "-1",
"data-theme": "light-border",
"data-animation": "fade",
role: "tooltip",
"data-placement": "top",
style: "max-width: 350px; transition-duration:300ms;"
});
const divTippyContent = createElem("div", {
id: "kadastrsMenuDiv-content",
classList: ["tippy-content"],
"data-state": "hidden",
style: "transition-duration: 300ms;"
});
const oAddressTextDiv = createElem("div", {
classList: ["coordinates-wrapper"]
});
const oVenuesTextDiv = createElem("div", {
classList: ["coordinates-wrapper"],
style: "white-space: pre-wrap;"
});
let sVenues = "❌";
if (mKadastrsFeaturesData[e.featureId].found_venues) {
sVenues = mKadastrsFeaturesData[e.featureId].found_venues
.map((oVenue) => {
const oVenueActual = wmeSDK.DataModel.Venues.getById({ venueId: oVenue.id });
let sArea = "";
if (oVenueActual) {
sArea = area(oVenueActual.geometry).toFixed(2);
}
return `${oVenue.name} (${sArea === "" ? area(oVenue.geometry).toFixed(2) : sArea}m2)`;
})
.join("\r\n•");
if (mKadastrsFeaturesData[e.featureId].found_venues.length > 1) {
sVenues = "\r\n•" + sVenues + "\r\n";
}
}
oVenuesTextDiv.innerHTML = `Venues: ${sVenues} \n Residential: ${(mKadastrsFeaturesData[e.featureId].found_residential ?? []).length === 1
? "✅"
: mKadastrsFeaturesData[e.featureId].found_residential ?? "❌"} HN: ${(mKadastrsFeaturesData[e.featureId].found_hn ?? []).length === 1
? "✅"
: mKadastrsFeaturesData[e.featureId].found_hn ?? "❌"}`;
divTippyContent.appendChild(oVenuesTextDiv);
const oInputForm = createElem("div", {
classList: ["wz-text-input-inner-container"]
});
const oInputInput = createElem("wz-text-input", {
value: mKadastrsFeaturesData[e.featureId].kadastrs_data
});
oInputInput.appendChild(oInputForm);
oAddressTextDiv.appendChild(oInputInput);
divTippyContent.appendChild(oAddressTextDiv);
const mSDKSelection = wmeSDK.Editing.getSelection();
if (mSDKSelection?.ids.length === 1) {
const oApplyAddressForm = createElem("div", {
classList: ["external-providers-control", "form-group"]
});
divTippyContent.appendChild(oApplyAddressForm);
const oApplyAddressFormLabel = createElem("wz-label", {
"html-for": ""
});
oApplyAddressFormLabel.innerText = "Apply Address to selected Venue:";
oApplyAddressForm.appendChild(oApplyAddressFormLabel);
const fnFullyApplyToSelectedClick = () => applyAddress(e, "full");
const oWZButtonFullyApplyToSelectedPlace = createElem("wz-button", {
color: "secondary",
size: "sm",
classList: ["overlay-button"],
disabled: "false",
textContent: "Full"
}, { click: fnFullyApplyToSelectedClick });
const oWZIconFullyApplyToSelectedPlace = createElem("i", {
classList: ["w-icon w-icon-location-check-fill"],
style: "font-size:18px;"
});
oWZButtonFullyApplyToSelectedPlace.prepend(oWZIconFullyApplyToSelectedPlace);
oApplyAddressForm.appendChild(oWZButtonFullyApplyToSelectedPlace);
const bIsVienseta = mKadastrsFeaturesData[e.featureId].is_vienseta;
if (bIsVienseta) {
const fnPasteViensetaAddressClick = () => applyAddress(e, "vienseta");
const oWZButtonApplyAsViensetaToSelectedPlace = createElem("wz-button", {
color: "secondary",
size: "sm",
classList: ["overlay-button"],
disabled: "false",
textContent: "Keep Name adding Vienseta"
}, { click: fnPasteViensetaAddressClick });
const oWZIconApplyAsViensetaToSelectedPlace = createElem("i", {
classList: ["w-icon w-icon-home"],
style: "font-size: 18px;"
});
oWZButtonApplyAsViensetaToSelectedPlace.prepend(oWZIconApplyAsViensetaToSelectedPlace);
oApplyAddressForm.appendChild(oWZButtonApplyAsViensetaToSelectedPlace);
}
else {
const fnApplyKeepingNameToSelectedClick = () => applyAddress(e, "");
const oWZButtonApplyKeepingNameToSelectedPlace = createElem("wz-button", {
color: "secondary",
size: "sm",
classList: ["overlay-button"],
disabled: "false",
textContent: "Keep Name"
}, { click: fnApplyKeepingNameToSelectedClick });
const oWZIconApplyKeepingNameToSelectedPlace = createElem("i", {
classList: ["w-icon w-icon-location-fill"],
style: "font-size: 18px;"
});
oWZButtonApplyKeepingNameToSelectedPlace.prepend(oWZIconApplyKeepingNameToSelectedPlace);
oApplyAddressForm.appendChild(oWZButtonApplyKeepingNameToSelectedPlace);
}
}
const oCreateVenueForm = createElem("div", {
classList: ["external-providers-control", "form-group"]
});
divTippyContent.appendChild(oCreateVenueForm);
const oCreateVenueFormLabel = createElem("wz-label", {
"html-for": ""
});
oCreateVenueFormLabel.innerText = "Create Venue:";
oCreateVenueForm.appendChild(oCreateVenueFormLabel);
if (!mKadastrsFeaturesData[e.featureId].found_residential) {
const fnCreateResidentialClick = () => createResidential(e);
const oWZIconCreateResidential = createElem("i", {
classList: ["w-icon w-icon-navigation-now-fill"],
style: "font-size:18px;"
});
const oWZButtonCreateResidential = createElem("wz-button", {
color: "secondary",
size: "sm",
classList: ["overlay-button"],
disabled: "false",
textContent: "Residential"
}, { click: fnCreateResidentialClick });
oWZButtonCreateResidential.prepend(oWZIconCreateResidential);
oCreateVenueForm.appendChild(oWZButtonCreateResidential);
}
if (!mKadastrsFeaturesData[e.featureId].found_hn) {
const fnCreateHNClick = () => createHN(e);
const oWZButtonCreateHN = createElem("wz-button", {
color: "secondary",
size: "sm",
classList: ["overlay-button"],
disabled: "false",
textContent: "HN"
}, { click: fnCreateHNClick });
const oWZIconCreateHN = createElem("i", {
classList: ["w-icon w-icon-home"],
style: "font-size:18px;"
});
oWZButtonCreateHN.prepend(oWZIconCreateHN);
oCreateVenueForm.appendChild(oWZButtonCreateHN);
}
const fnForceCreateClick = () => createVenue(e);
const oWZButtonCreatePlace = createElem("wz-button", {
color: "secondary",
size: "sm",
classList: ["overlay-button"],
disabled: "false",
textContent: `${mKadastrsFeaturesData[e.featureId].found_venues ? "Force Create Place" : "Place"}`
}, { click: fnForceCreateClick });
const oWZIconCreatePlace = createElem("i", {
classList: ["w-icon w-icon-polygon"],
style: "font-size:18px;"
});
oWZButtonCreatePlace.prepend(oWZIconCreatePlace);
oCreateVenueForm.appendChild(oWZButtonCreatePlace);
divElemRoot.appendChild(divTippyContent);
$KadastrsMenuPopupDiv.replaceChildren(divElemRoot);
const mPopupPixelPosition = wmeSDK.Map.getMapPixelFromLonLat({
lonLat: { lon: placeGeom.coordinates[0], lat: placeGeom.coordinates[1] }
});
const dataPlacement = "right";
$KadastrsMenuPopupDiv.style.transform = `translate(${Math.round(mPopupPixelPosition.x + 24)}px, ${Math.round(mPopupPixelPosition.y - 24)}px)`;
$KadastrsMenuPopupDiv.querySelector("#kadastrsMenuDiv-tooltip")?.setAttribute("data-placement", dataPlacement);
$KadastrsMenuPopupDiv.querySelector("#kadastrsMenuDiv-tooltip")?.setAttribute("data-state", "visible");
$KadastrsMenuPopupDiv.querySelector("#kadastrsMenuDiv-content")?.setAttribute("data-state", "visible");
let aFoundVenues = [];
if (mKadastrsFeaturesData[e.featureId].found_venues) {
aFoundVenues = [...aFoundVenues, ...mKadastrsFeaturesData[e.featureId].found_venues];
}
if (mKadastrsFeaturesData[e.featureId].found_residential) {
aFoundVenues = [...aFoundVenues, ...mKadastrsFeaturesData[e.featureId].found_residential];
}
if (mKadastrsFeaturesData[e.featureId].found_hn) {
aFoundVenues = [...aFoundVenues, ...mKadastrsFeaturesData[e.featureId].found_hn];
}
const placePoint = placeGeom;
aFoundVenues.forEach(sFoundVenueKey => {
highlightVenue2(sFoundVenueKey, "blue");
});
aFoundVenues.forEach(sFoundVenueKey => {
drawConnectionLines(sFoundVenueKey, placePoint);
});
setTimeout(() => W.map.getLayerByUniqueName("wme-ut-kadastrs-hover").redraw(), 0);
}
function createGeometry(e) {
const vertex = 0.000196;
const placeGeom = mKadastrsFeaturesData[e.featureId].geometry;
const [lon, lat] = placeGeom.coordinates;
const oRectangle = polygon([
[
[lon - vertex, lat - vertex / 2],
[lon - vertex, lat + vertex / 2],
[lon + vertex, lat + vertex / 2],
[lon + vertex, lat - vertex / 2],
[lon - vertex, lat - vertex / 2]
]
]);
const oRotatedRectangle = transformRotate(oRectangle, 10, {
pivot: centroid(oRectangle).geometry.coordinates
});
return oRotatedRectangle;
}
function applyAddress(e, sMode) {
const mAddressBuffer = convertKadastrsAddressStringToParts(mKadastrsFeaturesData[e.featureId].kadastrs_data, "waze");
if (!mAddressBuffer) {
return;
}
const selection = wmeSDK.Editing.getSelection();
if (!selection || selection.objectType !== "venue") {
return;
}
if (selection.ids.length > 0) {
if (sMode === "vienseta") {
let oStreet = findStreetId(mAddressBuffer.cityName, mAddressBuffer.name);
if (!oStreet) {
oStreet = findStreetId(`${mAddressBuffer.cityName}, ${mAddressBuffer.pagastsName}`, mAddressBuffer.name);
}
if (!oStreet) {
const oNewStreet = wmeSDK.DataModel.Streets.addStreet({
cityId: mAddressBuffer.cityID,
streetName: mAddressBuffer.name
});
updateVenue(selection.ids[0].toString(), { streetID: oNewStreet.id });
}
else {
updateVenue(selection.ids[0].toString(), { streetID: oStreet.attributes.id });
}
}
else {
let sStreetID = mAddressBuffer.streetID;
if (!sStreetID) {
let oStreet = findStreetId(mAddressBuffer.cityName, mAddressBuffer.streetName ?? "");
if (!oStreet) {
oStreet = findStreetId(`${mAddressBuffer.cityName}, ${mAddressBuffer.pagastsName}`, mAddressBuffer.name);
}
if (oStreet) {
sStreetID = oStreet.attributes.id;
}
}
if (!sStreetID) {
const oNewStreet = wmeSDK.DataModel.Streets.addStreet({
cityId: mAddressBuffer.cityID,
streetName: mAddressBuffer.name
});
sStreetID = oNewStreet.id;
}
if (!sStreetID) {
console.log("Error: no Street!");
}
updateVenue(selection.ids[0].toString(), {
houseNumber: mAddressBuffer.houseNumber,
streetID: sStreetID,
name: sMode === "full" ? mAddressBuffer.name : undefined
});
}
}
}
function updateVenue(sVenueId, mAddressData) {
if (mAddressData.streetID) {
wmeSDK.DataModel.Venues.updateAddress({
venueId: sVenueId,
houseNumber: mAddressData.houseNumber,
streetId: mAddressData.streetID
});
}
if (mAddressData.name) {
try {
wmeSDK.DataModel.Venues.updateVenue({
venueId: sVenueId,
name: mAddressData.name,
lockRank: 2
});
}
catch (oError) {
}
}
}
function createResidential(e) {
const WMEAddressParams = convertKadastrsAddressStringToParts(mKadastrsFeaturesData[e.featureId].kadastrs_data, "waze");
if (!WMEAddressParams) {
return;
}
const oGeometry = createGeometry(e);
const addressPoi = centroid(oGeometry.geometry);
const mAddressPoiPixelPosition = wmeSDK.Map.getMapPixelFromLonLat({
lonLat: { lon: addressPoi.geometry.coordinates[0], lat: addressPoi.geometry.coordinates[1] }
});
mAddressPoiPixelPosition.x += 20;
mAddressPoiPixelPosition.y -= 20;
const mMovedcoordinates = wmeSDK.Map.getLonLatFromMapPixel(mAddressPoiPixelPosition);
const poi = point([mMovedcoordinates.lon, mMovedcoordinates.lat]);
const sVenueId = wmeSDK.DataModel.Venues.addVenue({
category: "RESIDENTIAL",
geometry: poi.geometry
}).toString();
updateVenue(sVenueId, WMEAddressParams);
wmeSDK.Editing.setSelection({
selection: {
ids: [sVenueId],
objectType: "venue"
}
});
}
function createHN(e) {
const WMEAddressParams = convertKadastrsAddressStringToParts(mKadastrsFeaturesData[e.featureId].kadastrs_data, "waze");
if (!WMEAddressParams) {
return;
}
const oGeometry = createGeometry(e);
const addressPoi = centroid(oGeometry.geometry);
const mAddressPoiPixelPosition = wmeSDK.Map.getMapPixelFromLonLat({
lonLat: { lon: addressPoi.geometry.coordinates[0], lat: addressPoi.geometry.coordinates[1] }
});
mAddressPoiPixelPosition.x += 20;
mAddressPoiPixelPosition.y += 20;
const mMovedcoordinates = wmeSDK.Map.getLonLatFromMapPixel(mAddressPoiPixelPosition);
const poi = point([mMovedcoordinates.lon, mMovedcoordinates.lat]);
const aSegmentsWithStreetId = wmeSDK.DataModel.Segments.getAll().filter((oHouseNumber) => oHouseNumber.primaryStreetId === WMEAddressParams.streetID);
const mBBox = getOLMapExtent();
const oMapPoly = polygon([
[
[mBBox.left, mBBox.bottom],
[mBBox.right, mBBox.bottom],
[mBBox.right, mBBox.top],
[mBBox.left, mBBox.top],
[mBBox.left, mBBox.bottom]
]
]);
const aSegmentsOnScreen = aSegmentsWithStreetId.filter(oSegment => booleanWithin(oSegment.geometry, oMapPoly) || booleanIntersects(oSegment.geometry, oMapPoly));
const closestSegment = aSegmentsOnScreen.reduce((oClosestSegment, oSegment) => {
const distA = pointToLineDistance(poi, lineString(oSegment.geometry.coordinates), {
units: "meters"
});
const distB = pointToLineDistance(poi, lineString(oClosestSegment.geometry.coordinates), {
units: "meters"
});
return distA < distB ? oSegment : oClosestSegment;
});
wmeSDK.DataModel.HouseNumbers.addHouseNumber({
segmentId: closestSegment.id,
number: WMEAddressParams.houseNumber,
point: poi.geometry
});
}
function createVenue(e) {
const WMEAddressParams = convertKadastrsAddressStringToParts(mKadastrsFeaturesData[e.featureId].kadastrs_data, "waze");
if (!WMEAddressParams) {
alert(`Street not found on map. Please check if it actually exist ${mKadastrsFeaturesData[e.featureId].kadastrs_data}`);
return;
}
const oGeometry = createGeometry(e);
const sVenueId = wmeSDK.DataModel.Venues.addVenue({
category: "OTHER",
geometry: oGeometry.geometry
}).toString();
updateVenue(sVenueId, WMEAddressParams);
wmeSDK.Editing.setSelection({
selection: {
ids: [sVenueId],
objectType: "venue"
}
});
}
function drawConnectionLines(foundVenueKey, placePt) {
var placeGeomTarget = centroid(foundVenueKey.geometry);
wmeSDK.Map.addFeatureToLayer({
layerName: "wme-ut-kadastrs-lines",
feature: {
id: "line",
type: "Feature",
geometry: {
type: "LineString",
coordinates: [placePt.coordinates, placeGeomTarget.geometry.coordinates]
}
}
});
}
function hideTooltipAfterDelay() {
iPopupTimeout = window.setTimeout(hideCustomPopup, 300);
}
function onFeatureUnHoverEvent(e) {
hideTooltipAfterDelay();
wmeSDK.Map.removeAllFeaturesFromLayer({ layerName: "wme-ut-kadastrs-lines" });
wmeSDK.Map.removeAllFeaturesFromLayer({ layerName: "wme-ut-kadastrs-hover" });
aWMEPolygonHighlightBlueFeatures.forEach(feature => {
feature.style = null;
});
aWMEPolygonHighlightBlueFeatures = [];
}
function highlightVenue2(foundVenue, sColor) {
if (foundVenue.geometry.type === "Polygon") {
wmeSDK.DataModel.Venues.getById({ venueId: foundVenue.id });
const oVenue = W.model.venues.getByIds([foundVenue.id]).at(0);
if (oVenue) {
const poly = W.userscripts.getFeatureElementByDataModel(oVenue);
poly?.setAttribute("stroke", sColor );
poly?.setAttribute("stroke-dasharray", "12 8");
poly?.setAttribute("stroke-width", "3");
poly?.setAttribute("fill", "#00695C");
}
}
}
function hideCustomPopup() {
if ($KadastrsMenuPopupDiv) {
$KadastrsMenuPopupDiv.querySelector("#kadastrsMenuDiv-content")?.setAttribute("data-state", "hidden");
$KadastrsMenuPopupDiv.querySelector("#kadastrsMenuDiv-tooltip")?.setAttribute("data-state", "hidden");
$KadastrsMenuPopupDiv.replaceChildren();
}
}
function findStreetId(sCityName, sStreetName, bVienseta) {
return Object.values(W.model.streets.objects).find((street) => {
if (!W.model.cities.objects[street.attributes.cityID]) {
console.log("Error: no City");
}
if (street.attributes.name === sStreetName &&
W.model.cities.objects[street.attributes.cityID].attributes.name.includes(sCityName)) {
return true;
}
});
}
function populateIds(addresses) {
const streetCache = {};
for (const [index, address] of addresses.entries()) {
if (!streetCache[address.streetName]) {
const oStreet = findStreetId(address.cityName, address.streetName);
if (!oStreet && address.streetName !== "") {
const sErrorMsg = "Error: Can't find street: " + address.streetName + " in City: " + address.cityName;
console.log(sErrorMsg);
alert(sErrorMsg);
return index;
}
if (oStreet) {
streetCache[address.streetName] = oStreet.attributes.id;
}
}
address.streetID = streetCache[address.streetName];
}
return undefined;
}
function convertKadastrsAddressStringToParts(sAddress, sMode) {
const aAddress = sAddress.split(", ");
const bNoCity = aAddress[1].slice(-4) === "pag.";
let sCityName = bNoCity ? "" : aAddress[1];
const sPagastsName = bNoCity ? aAddress[1] : aAddress[2];
bNoCity ? aAddress[2] : aAddress[3];
bNoCity ? aAddress[3] : aAddress[4];
const sStreetNameOrHN = aAddress[0];
let sName = "";
let sHN = "";
let bVienseta = false;
let bVasarnica = false;
if (bNoCity) {
bVienseta = true;
sName = `${sStreetNameOrHN.slice(1, -1)}, ${sPagastsName}`;
const sStreetName = "";
return {
cityName: sCityName,
streetName: sStreetName,
houseNumber: sHN,
name: sName,
isVienseta: bVienseta
};
}
else {
if (sStreetNameOrHN.startsWith('"') && sStreetNameOrHN.endsWith('"')) {
sName = sStreetNameOrHN.slice(1, -1);
const aVasarnica = sName.split(" ");
const sLast = aVasarnica.pop();
const sVasarnicaName = aVasarnica.join(" ");
let bIsVasarnica = aVasarnicas.some(mRecord => mRecord.name === sVasarnicaName && mRecord.parent === aAddress[1]);
if (!bIsVasarnica) {
const sCombinedParent = `${aAddress[1]}, ${aAddress[2]}`;
bIsVasarnica = aVasarnicas.some(mRecord => mRecord.name === sVasarnicaName && mRecord.parent === sCombinedParent);
if (bIsVasarnica) {
sCityName = sCombinedParent;
}
}
if (bIsVasarnica) {
bVasarnica = true;
sHN = aVasarnica.length > 0 ? sLast ?? "" : "";
sName = sHN;
}
else {
bVienseta = true;
}
}
else {
const aStreetNameAndHN = sStreetNameOrHN.split(" ");
sName = "";
sHN = aStreetNameAndHN.pop() ?? "";
if (sHN.includes("k-")) {
sHN = `${aStreetNameAndHN.pop()} ${sHN}`;
}
sName = sHN;
}
const iLastIndex = sStreetNameOrHN.lastIndexOf(" " + sName);
const sStreetName = sHN === ""
? ""
: iLastIndex === -1
? sStreetNameOrHN
: bVasarnica
? sStreetNameOrHN.substring(1, iLastIndex)
: sStreetNameOrHN.substring(0, iLastIndex);
if (sMode !== "waze") {
return {
cityName: sCityName,
streetName: bVienseta ? "" : sStreetName,
houseNumber: sHN,
name: sName,
isVienseta: bVienseta,
isVasarnica: bVasarnica
};
}
else {
const oStreet = Object.values(W.model.streets.objects).find((street) => {
if (street.attributes.name === sStreetName &&
W.model.cities.objects[street.attributes.cityID].attributes.name.includes(sCityName)) {
return true;
}
});
let oCity;
if (!oStreet) {
oCity = Object.values(W.model.cities.objects).find((oCity) => {
return oCity.attributes.name === sCityName;
});
}
return {
cityID: oStreet ? oStreet.attributes.cityID : oCity ? oCity.attributes.id : undefined,
streetID: oStreet ? oStreet.attributes.id : undefined,
houseNumber: sHN,
name: sName,
cityName: sCityName,
pagastsName: sPagastsName
};
}
}
}
function makeGetRequest(sURL) {
return new Promise((resolve, reject) => {
GM_xmlhttpRequest({
method: "GET",
url: sURL,
onload: response => resolve(response.responseText),
onerror: error => reject(error)
});
});
}
function excludeKadastrsAddressConsistentWithWME(oAddressRegex, oVenueOrHouseNumber) {
const indexToRemove = aFetchedAddressesNotPresentInWME_21.findIndex(mFetchedAddresses => oAddressRegex.test(mFetchedAddresses.attributes.std));
if (indexToRemove > -1) {
aFetchedAddressesNotPresentInWME_21.splice(indexToRemove, 1);
}
const indexToUpdate = aAllKadastrsFetchedAddresses_11.findIndex(mFetchedAddresses => oAddressRegex.test(mFetchedAddresses.attributes.std));
if (indexToUpdate > -1) {
if (oVenueOrHouseNumber.geometry.type === "Point") {
if (oVenueOrHouseNumber.categories?.[0] === "RESIDENCE_HOME") {
if (!aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Residential) {
aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Residential = [];
}
aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Residential.push(oVenueOrHouseNumber);
}
else if (oVenueOrHouseNumber.categories) {
if (!aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Venues) {
aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Venues = [];
}
aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Venues.push(oVenueOrHouseNumber);
}
else {
if (!aAllKadastrsFetchedAddresses_11[indexToUpdate].data.HN) {
aAllKadastrsFetchedAddresses_11[indexToUpdate].data.HN = [];
}
aAllKadastrsFetchedAddresses_11[indexToUpdate].data.HN.push(oVenueOrHouseNumber);
}
}
else {
aWMEValidAddressVenues.push(oVenueOrHouseNumber);
if (!aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Venues) {
aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Venues = [];
}
aAllKadastrsFetchedAddresses_11[indexToUpdate].data.Venues.push(oVenueOrHouseNumber);
}
}
}
function getRegex(aStrings) {
const regexPattern = aStrings.map(v => v).join("\\s*,\\s*");
return new RegExp(regexPattern);
}
function findStreetName(iStreetId) {
if (!W.model.streets.objects[iStreetId]) {
return {
name: "",
city: ""
};
}
const sName = W.model.streets.objects[iStreetId].attributes.name;
const iCity = W.model.streets.objects[iStreetId].attributes.cityID;
const sCity = W.model.cities.objects[iCity].attributes.countryID === 123 ? W.model.cities.objects[iCity].attributes.name : "";
return {
name: sName,
city: sCity
};
}
function getBBoxv2() {
const mapExtent = W.map.getExtent();
return mapExtent.toString();
}
function getBBox3059() {
const extent = W.map.getExtent();
if (Array.isArray(extent)) {
proj4.defs("EPSG:3059", "+proj=tmerc +lat_0=0 +lon_0=24 +k=0.9996 +x_0=500000 +y_0=-6000000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs +type=crs");
const aConvertedPoints = [
...proj4("EPSG:4326", "EPSG:3059", extent.slice(0, 2)).reverse(),
...proj4("EPSG:4326", "EPSG:3059", extent.slice(2, 4)).reverse()
];
const string = aConvertedPoints.join();
return string;
}
}
exports.WME_LAYER_NAMES = WME_LAYER_NAMES;
return exports;
})({});