sleep prediction

Keep track of time spent on any website to predict sleeping time

您需要先安装一个扩展,例如 篡改猴Greasemonkey暴力猴,之后才能安装此脚本。

您需要先安装一个扩展,例如 篡改猴暴力猴,之后才能安装此脚本。

您需要先安装一个扩展,例如 篡改猴暴力猴,之后才能安装此脚本。

您需要先安装一个扩展,例如 篡改猴Userscripts ,之后才能安装此脚本。

您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey,才能安装此脚本。

您需要先安装用户脚本管理器扩展后才能安装此脚本。

(我已经安装了用户脚本管理器,让我安装!)

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

(我已经安装了用户样式管理器,让我安装!)

// ==UserScript==
// @name         sleep prediction
// @namespace    http://tampermonkey.net/
// @version      0.5
// @description  Keep track of time spent on any website to predict sleeping time
// @icon         https://www.iconsdb.com/icons/preview/gray/clock-10-xxl.png
// @author       moony
// @match        *://*/*
// @grant        GM_registerMenuCommand
// @grant        GM_setValue
// @grant        GM_getValue
// @grant        GM_listValues
// @grant        GM_deleteValue
// @grant        window.onurlchange
// @require      https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js
// @license GPL-3.0
// ==/UserScript==

(function() {
  'use strict';
  let sleepTimeDisplay = false; let sleepTimeDiv = document.createElement("div");
  let Index_lastTime_usec = 0; let MaxIndex_lastTime_usec; let counter = 0; let typeAlgorithme = GM_getValue("typeAlgorithme", null);
  var predictionSleep;
  let diffTime = 0; let minSleep = 6; let maxSleep = 24;
  let CurrentDate = new Date();
  let SleepingTimeArray = []; let WakeUpTimeArray = [];
  const tf = window.tf; let model = tf.sequential(); tf.setBackend('webgl'); let _TrainOnce = true;

  document.addEventListener("keypress", arrayTimeUpdate);
  document.addEventListener("mousemove", arrayTimeUpdate);
  document.addEventListener("mousedown", arrayTimeUpdate);

  function arrayTimeUpdate() {
     let wakeTimer = GM_getValue("wakeTimer", null);
     let oldDate = GM_getValue("oldDate", null);
     if (oldDate == null) { oldDate = CurrentDate.getTime(); GM_setValue("SleepingTimeArray", [8.1, 9.1, 10.1]); GM_setValue("WakeUpTimeArray", [16.1, 15.1, 14.1]); } //first time run
     CurrentDate = new Date();
     diffTime = CurrentDate.getTime() - oldDate;
     diffTime = diffTime/(1000*60*60);
     if (diffTime > minSleep && diffTime < maxSleep) {
         SleepingTimeArray = GM_getValue("SleepingTimeArray", null);
         WakeUpTimeArray = GM_getValue("WakeUpTimeArray", null);
         if (SleepingTimeArray == null) { SleepingTimeArray = [diffTime]; } //first time store
         else { SleepingTimeArray.push(diffTime); }
         if (WakeUpTimeArray == null) { WakeUpTimeArray = [wakeTimer]; }
         else { WakeUpTimeArray.push(wakeTimer); }
         GM_setValue("SleepingTimeArray", SleepingTimeArray);
         GM_setValue("WakeUpTimeArray", WakeUpTimeArray);
         wakeTimer = 0;
     }
     else if (diffTime <= minSleep) {
         if (wakeTimer == null) { wakeTimer = diffTime; }
         else { wakeTimer += diffTime; }
     }
     else { wakeTimer = 0; }
     GM_setValue("wakeTimer", wakeTimer);
     GM_setValue("oldDate", CurrentDate.getTime());
  }

  function predictSleep() {
      if ( typeAlgorithme == "Avg" ) { return predictSleepAvg(); } else { return predictSleepML(); }
  }

  function predictSleepML() {
    if (_TrainOnce)
    { _TrainOnce = false;
    let sleepingTimeArray = GM_getValue("SleepingTimeArray", null);
    let wakeUpTimeArray = GM_getValue("WakeUpTimeArray", null);
    let index = sleepingTimeArray.length - 1;
    while (index > -1) {
        sleepingTimeArray[index] = sleepingTimeArray[index] / maxSleep;
        wakeUpTimeArray[index] = wakeUpTimeArray[index] / maxSleep;
        index--;
    }
    sleepingTimeArray = tf.tensor2d(sleepingTimeArray, [sleepingTimeArray.length, 1]);
    wakeUpTimeArray = tf.tensor2d(wakeUpTimeArray, [wakeUpTimeArray.length, 1]);
    //const inputTensor = tf.stack([sleepingTimeArray, wakeUpTimeArray], 1).reshape([1, -1, 2]);
    //model.add(tf.layers.gru({units: 16, inputShape: [wakeUpTimeArray.length, 1]}));
    model.add(tf.layers.dense({ units: 128, inputShape: [1], activation: 'swish' })); // sigmoid, hardSigmoid, softplus, softsign, tanh, softmax, linear, relu, relu6, selu, elu, swish | https://www.tensorflow.org/js/tutorials/training/linear_regression
    model.add(tf.layers.dense({ units: 64, activation: 'softsign' }));
    model.add(tf.layers.dense({ units: 32, activation: 'selu' }));
    model.add(tf.layers.dense({ units: 1, activation: 'linear' }));
    model.compile({loss: 'meanSquaredError', optimizer: 'adam'});
    model.fit(wakeUpTimeArray, sleepingTimeArray, {epochs: 50, batchSize: 32, optimizer: tf.train.adam(0.001), callbacks: {onEpochEnd: async(epoch, logs) => { let lossStr = logs.loss ? logs.loss.toFixed(4) : 'N/A'; console.log(`Epoch: ${epoch} - loss: ${lossStr}`);}}});
    // const modelJSON = model.toJSON(); const modelString = JSON.stringify(modelJSON); GM_setValue('model', modelString); // Save the model
    } // <train | predict>
       // const modelString = GM_getValue('model'); const modelJSON = JSON.parse(modelString); const loadedModel = tf.loadLayersModel(modelJSON); // Load the model

       const wakeTimer = GM_getValue("wakeTimer", 0) / maxSleep;
       let wake = [wakeTimer];
       wake = tf.tensor2d(wake, [wake.length, 1]);
       const predictionTensor = model.predict(wake);
       const prediction = predictionTensor.dataSync()[0] * maxSleep;
       tf.dispose(wake); // clean up: Memory management
      const predictionSleep = convertHours(prediction);
      return predictionSleep;
  }

     function predictSleepAvg() {
      SleepingTimeArray = GM_getValue("SleepingTimeArray", null); WakeUpTimeArray = GM_getValue("WakeUpTimeArray", null); //for read persistent storage
      let index = SleepingTimeArray.length - 1; let sum = 0; const nsleep = SleepingTimeArray.length; counter++
      while (index > -1) { sum += SleepingTimeArray[index]; index--; }
      const sleepAverage = sum / nsleep; sum = 0; index = WakeUpTimeArray.length - 1; const nwake = WakeUpTimeArray.length;
      while (index > -1) { sum += WakeUpTimeArray[index]; index--; }
      const wakeAverage = sum / nwake; const ratio = sleepAverage / wakeAverage; const wakeTimer = GM_getValue("wakeTimer", 0); const predict = ratio * wakeTimer;
      return convertHours(predict);
    }

    function convertHours(predict)
    {
      const hours = Math.floor(predict);
      let remainder = predict - hours;
      remainder = remainder * 60;
      const minutes = Math.floor(remainder);
      remainder = remainder - minutes;
      remainder = remainder * 60;
      const seconds = Math.floor(remainder);
      const predictionText = `${hours} hours, ${minutes} minutes and ${seconds} seconds.(${counter})`;
      return predictionText;
    }

    function displaySleepTime() {
     sleepTimeDisplay = true; GM_setValue("sleepTimeDisplay", sleepTimeDisplay);
     predictionSleep = predictSleep();
     let pos = GM_getValue("sleepTimeDivPos", { x: "50%", y: "50%" }); if (pos.x == "NaN" || pos.y == "NaN") pos = { x: "50%", y: "50%" };
     sleepTimeDiv.style.cssText = `left: ${pos.x}; top: ${pos.y}; background-color: rgba(0,0,0,0.5); color: white; position: fixed; transform: translate(-50%, -50%); font-size: 100%; border-radius: 5px; padding: 10px; text-align: center; z-index: 9999;`;
     sleepTimeDiv.innerHTML = `If you sleep now, you will WakeUp in: <span id='sleepTimeSpan'>${predictionSleep}</span>`;

     document.body.appendChild(sleepTimeDiv);
     let sleepTimeSpan = document.getElementById("sleepTimeSpan");
     sleepTimeSpan.style.marginRight = "30px";
     let closeButton = document.createElement("button");
     closeButton.style.cssText = `position: absolute; top: 5px; right: 5px; background-color: rgba(0,0,0,0.5); color: white; font-size: 100%; padding: 5px 10px; border-radius: 3px; box-shadow: 0px 0px 8px rgba(0,0,0,0.1); transition: all 0.2s ease-in-out;`;
     closeButton.innerHTML = "X";


  sleepTimeDiv.addEventListener("dragover", (event) => { event.preventDefault(); });
  sleepTimeDiv.addEventListener("drop", handleFileDrop);

  closeButton.addEventListener("click", function() { removeSleepTimeDisplay(); });

  closeButton.addEventListener("mouseover", function() {
    closeButton.style.backgroundColor = "rgba(0,0,0,0.2)";
    closeButton.style.color = "white";
  });

  closeButton.addEventListener("mouseout", function() {
    closeButton.style.backgroundColor = "rgba(0,0,0,0.5)";
    closeButton.style.color = "white";
  });
  sleepTimeDiv.addEventListener("mousedown", function(event) {
    let currentX = event.clientX - sleepTimeDiv.offsetLeft; let currentY = event.clientY - sleepTimeDiv.offsetTop;
    document.addEventListener("mouseup", function() {
    document.removeEventListener("mousemove", moveDiv);
    let pos = { x: sleepTimeDiv.style.left, y: sleepTimeDiv.style.top }; GM_setValue("sleepTimeDivPos", pos);
  });
  document.addEventListener("mousemove", moveDiv);
  function moveDiv(event) {
    sleepTimeDiv.style.left = event.clientX - currentX + "px";
    sleepTimeDiv.style.top = event.clientY - currentY + "px";
  }
});

  sleepTimeDiv.appendChild(closeButton);

  setInterval(function() {
   document.querySelector("#sleepTimeSpan") && (document.querySelector("#sleepTimeSpan").innerHTML = `${predictSleep()}`);
  }, 1000);
}

function removeSleepTimeDisplay() {
  if (sleepTimeDisplay) {
    sleepTimeDisplay = false; GM_setValue("sleepTimeDisplay", sleepTimeDisplay);
    const pos = { x: "50%", y: "50%" }; GM_setValue("sleepTimeDivPos", pos);
    sleepTimeDiv.remove();
  }
}

function handleFileDrop(event) { // get "BrowserHistory.json" browser history from https://takeout.google.com/
  event.preventDefault(); event.stopPropagation(); const reader = new FileReader(); reader.readAsArrayBuffer(event.dataTransfer.files[0]); reader.onload = () => { const data = JSON.parse(new TextDecoder().decode(reader.result)); MaxIndex_lastTime_usec = data['Browser History'].length;
  SleepingTimeArray = GM_getValue("SleepingTimeArray", null); WakeUpTimeArray = GM_getValue("WakeUpTimeArray", null); let lastTime_usec = 0; let wake = 0; let diff = 0; let hours = 0; let minValidSleep = 8; let maxValidSleep = 8; const minValidWakeUp = 10; const maxValidWakeUp = 30;
  data['Browser History'].forEach(item => {
      if (lastTime_usec == 0) { lastTime_usec = item.time_usec; }
      else { diff = lastTime_usec - item.time_usec; hours = diff / (1000 * 60 * 60);
          if (hours <= maxSleep && hours >= minSleep && wake >= minValidWakeUp && wake <= maxValidWakeUp) {
              if (hours > maxValidSleep) { maxValidSleep = hours; }
              else if (hours < minValidSleep) { minValidSleep = hours; }
              if (SleepingTimeArray == null) { SleepingTimeArray = [hours]; WakeUpTimeArray = [wake]; }
              else { SleepingTimeArray.push(hours); WakeUpTimeArray.push(wake); }
              wake = 0; Index_lastTime_usec++;
          }
          else if (hours < 6) { wake += hours; }
          else { wake = 0; }
          lastTime_usec = item.time_usec;
      }
      console.log(item.time_usec + " - " + Index_lastTime_usec + " \ " + MaxIndex_lastTime_usec); counter++;
  });
  console.log(SleepingTimeArray); console.log(WakeUpTimeArray);
  GM_setValue("SleepingTimeArray", SleepingTimeArray); GM_setValue("WakeUpTimeArray", WakeUpTimeArray);
}; }

if (window.onurlchange === null) { console.log("URL CHANGE");
    let sleepTimeDisplay = GM_getValue("sleepTimeDisplay", false);
    if (sleepTimeDisplay) { displaySleepTime(); } else { removeSleepTimeDisplay();}
    //window.addEventListener('urlchange', (info) => { console.log("newly created"); });
}

GM_registerMenuCommand("Sleep Time", () => { if (sleepTimeDisplay) { removeSleepTimeDisplay(); } else { displaySleepTime(); }});
GM_registerMenuCommand("switchAlgorithm", () => { typeAlgorithme = GM_getValue("typeAlgorithme", "ML"); if (typeAlgorithme == "ML") { typeAlgorithme = "Avg"; } else { typeAlgorithme = "ML"; } GM_setValue("typeAlgorithme", typeAlgorithme); console.log("Apply: typeAlgorithme = " + typeAlgorithme); });
GM_registerMenuCommand("showDelKey", () => { const keys = GM_listValues(); const data = keys.map(key => { const value = GM_getValue(key); return { key, value }; }); console.table(data); const confirmation = confirm(`Do you want to delete all ${keys.length} values show in console?`);
 if (confirmation) { keys.forEach(key => { GM_deleteValue(key); }); console.log(`${keys.length} values have been deleted.`); } else { console.log(`No values have been deleted.`); } });

})();