您需要先安装一个扩展,例如 篡改猴、Greasemonkey 或 暴力猴,之后才能安装此脚本。
您需要先安装一个扩展,例如 篡改猴 或 暴力猴,之后才能安装此脚本。
您需要先安装一个扩展,例如 篡改猴 或 暴力猴,之后才能安装此脚本。
您需要先安装一个扩展,例如 篡改猴 或 Userscripts ,之后才能安装此脚本。
您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey,才能安装此脚本。
您需要先安装用户脚本管理器扩展后才能安装此脚本。
jpeg -> array
当前为
此脚本不应直接安装。它是供其他脚本使用的外部库,要使用该库请加入元指令 // @require https://update.cn-greasyfork.org/scripts/38665/252976/bv7_jpeg2array_b.js
// ==UserScript== // @name bv7_jpeg2array_b // @namespace bv7 // @version 0.3 // @description jpeg -> array // @author bv7 // @grant GM_xmlhttpRequest // ==/UserScript== class BaseImage { load(url, onload) { GM_xmlhttpRequest({ method : 'GET', url : this.nodesCaptchaImgs[iImg].src, overrideMimeType: 'text/plain; charset=x-user-defined', onload : (v) => { this.data = v.responseText; this.seek(0); if (onload) onload(v); } }); } seek(iData = 0) { this.iData = iData; } skip(i) { this.iData +=i; } getUint8() { return this.iData < this.data.length ? this.data.charCodeAt(this.iData) && 0xff : 0; } readUint8() { return this.iData < this.data.length ? this.data.charCodeAt(this.iData++) && 0xff : 0; } readUint16() { return (this.readUint8() << 8) | this.readUint8(); } } class JpegImage extends BaseImage { constructor() { this.dctZigZag = new Int32Array([ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 ]); this.dctCos1 = 4017 // cos(pi/16) this.dctSin1 = 799 // sin(pi/16) this.dctCos3 = 3406 // cos(3*pi/16) this.dctSin3 = 2276 // sin(3*pi/16) this.dctCos6 = 1567 // cos(6*pi/16) this.dctSin6 = 3784 // sin(6*pi/16) this.dctSqrt2 = 5793 // sqrt(2) this.dctSqrt1d2 = 2896 // sqrt(2) / 2 } readDataBlock() { value = new Array(this.readUint16() - 2); value.forEach((v, i) => value[i] = this.readUint8()); return value; } seekBit() { this.bitsData = 0; this.bitsCount = 0; } readBit() { if (this.bitsCount > 0) this.bitsCount--; else { this.bitsData = this.readUint8(); if (this.bitsData == 0xFF) { let nextByte = this.readUint8(); if (nextByte) { console.log('JpegImage: Error: unexpected marker: ' + ((this.bitsData << 8) | nextByte).toString(16)); return; } // unstuff 0 } this.bitsCount = 7; } return (this.bitsData >> this.bitsCount) & 1; } prepareComponents(frame) { frame.maxH = 0; frame.maxV = 0; frame.componentsOrder.forEach((v) => { let component = frame.components[v]; if (frame.maxH < component.h) frame.maxH = component.h; if (frame.maxV < component.v) frame.maxV = component.v; }); frame.mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / maxH); frame.mcusPerColumn = Math.ceil(frame.scanLines / 8 / maxV); frame.componentsOrder.forEach((v) => { let component = frame.components[v]; component.blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / maxH); component.blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / maxV); component.blocks = []; let blocksPerLineForMcu = mcusPerLine * component.h; let blocksPerColumnForMcu = mcusPerColumn * component.v; for (let i = 0; i < blocksPerColumnForMcu; i++) { let row = []; for (let j = 0; j < blocksPerLineForMcu; j++) row.push(new Int32Array(64)); component.blocks.push(row); } }); } buildHuffmanTable(codeLengths, values) { let length = codeLengths.length; while (length > 0 && !codeLengths[length - 1]) length--; let p = {children: [], index: 0}; let code = [p]; for (let i = 0, k = 0, q; i < length; i++) { for (let j = 0; j < codeLengths[i]; j++, k++) { p = code.pop(); p.children[p.index] = values[k]; while (p.index > 0) p = code.pop(); p.index++; code.push(p); while (code.length <= i) { code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } } if (i + 1 < length) { // p here points to last code code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } } return code[0].children; } decodeScan(data, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive) { this.seekBit(); let decodeHuffman = (tree) => { let node = tree; let bit; while ((bit = this.readBit()) !== null) { node = node[bit]; if (typeof node === 'number') return node; if (typeof node !== 'object') { console.log('JpegImage: Error: invalid huffman sequence'); return; } } return null; }; let receive = (length) => { let n = 0; for (; length > 0; length--) { let bit = this.readBit(); if (bit === null) return; n = (n << 1) | bit; } return n; }; let receiveAndExtend = (length) => { let n = receive(length); return (n >= 1 << (length - 1)) ? n : (n + (-1 << length) + 1); }; let decodeBaseline = (component, zz) => { let t = decodeHuffman(component.huffmanTableDC); let diff = t === 0 ? 0 : receiveAndExtend(t); zz[0] = (component.pred += diff); let k = 1; while (k < 64) { let rs = decodeHuffman(component.huffmanTableAC); let s = rs & 15; let r = rs >> 4; if (s === 0) { if (r < 15) break; else { k += 16; continue; } } else { k += r; zz[dctZigZag[k]] = receiveAndExtend(s); k++; } } } let decodeDCFirst = (component, zz) => { let t = decodeHuffman(component.huffmanTableDC); let diff = t === 0 ? 0 : (receiveAndExtend(t) << successive); zz[0] = (component.pred += diff); } let decodeDCSuccessive = (component, zz) => zz[0] |= this.readBit() << successive; let eobrun = 0; let decodeACFirst = (component, zz) => { if (eobrun > 0) eobrun--; else { let k = spectralStart; while (k <= spectralEnd) { let rs = decodeHuffman(component.huffmanTableAC); let s = rs & 15; let r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r) - 1; break; } else k += 16; } else { k += r; let z = ; zz[this.dctZigZag[k]] = receiveAndExtend(s) * (1 << successive); k++; } } } }; let successiveACState = 0; let successiveACNextValue = 0; let decodeACSuccessive = (component, zz) => { let k = spectralStart; let r = 0; while(k <= spectralEnd) { let z = dctZigZag[k]; let direction = zz[z] < 0 ? -1 : 1; switch (successiveACState) { case 0: // initial state let rs = decodeHuffman(component.huffmanTableAC); let s = rs & 15; r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r); successiveACState = 4; } else { r = 16; successiveACState = 1; } } else if (s !== 1) { console.log('JpegImage: Error: invalid ACn encoding'); return; } else { successiveACNextValue = receiveAndExtend(s); successiveACState = r ? 2 : 3; } continue; case 1: // skipping r zero items case 2: if (zz[z]) zz[z] += (this.readBit() << successive) * direction; else { r--; if (r === 0) successiveACState = successiveACState == 2 ? 3 : 0; } break; case 3: // set value for a zero item if (zz[z]) zz[z] += (this.readBit() << successive) * direction; else { zz[z] = successiveACNextValue << successive; successiveACState = 0; } break; case 4: // eob if (zz[z]) zz[z] += (this.readBit() << successive) * direction; break; } k++; } if (successiveACState === 4) { eobrun--; if (eobrun === 0) successiveACState = 0; } }; let decodeMcu = (component, decode, mcu, row, col) => decode( component, component.blocks[((mcu / frame.mcusPerLine) | 0) * component.v + row][(mcu % frame.mcusPerLine) * component.h + col] ); let decodeBlock = (component, decode, mcu) => decode( component, component.blocks[(mcu / component.blocksPerLine) | 0][mcu % component.blocksPerLine] ); let decodeFn = frame.progressive ? ( spectralStart === 0 ? ( successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive ) : ( successivePrev === 0 ? decodeACFirst : decodeACSuccessive ) ) : decodeBaseline; let mcu = 0; let mcuExpected = (components.length == 1) ? ( components[0].blocksPerLine * components[0].blocksPerColumn ) : ( frame.mcusPerLine * frame.mcusPerColumn ); if (!resetInterval) resetInterval = mcuExpected; while (mcu < mcuExpected) { // reset interval stuff components.forEach((v) => v.pred = 0); eobrun = 0; if (components.length == 1) { let component = components[0]; for (let n = 0; n < resetInterval; n++, mcu++) decodeBlock(component, decodeFn, mcu); } else for (let n = 0; n < resetInterval; n++) { for (let i = 0; i < components.length; i++) { let component = components[i]; for (let j = 0; j < component.v; j++) for (let k = 0; k < component.h; k++) decodeMcu(component, decodeFn, mcu, j, k); } mcu++; // If we've reached our expected MCU's, stop decoding if (mcu === mcuExpected) break; } // find marker this.bitsCount = 0; let marker = this.readUint16(); if (marker < 0xFFD0 || marker > 0xFFD7) { // !RSTx this.seek(this.iData - 2); if (marker < 0xFF00) console.log('JpegImage: Error: marker was not found'); break; } } } parse() { this.jfif = null; this.adobe = null; let frame; let resetInterval; let quantizationTables = []; let frames = []; let huffmanTablesAC = []; let huffmanTablesDC = []; this.seek(0); let fileMarker = readUint16(); if (fileMarker != 0xFFD8) { // SOI (Start of Image) console.log('JpegImage: Error: SOI not found'); return; } while ((fileMarker = readUint16()) != 0xFFD9) { // EOI (End of image) switch(fileMarker) { case 0xFF00: break; case 0xFFE0: // APP0 (Application Specific) case 0xFFE1: // APP1 case 0xFFE2: // APP2 case 0xFFE3: // APP3 case 0xFFE4: // APP4 case 0xFFE5: // APP5 case 0xFFE6: // APP6 case 0xFFE7: // APP7 case 0xFFE8: // APP8 case 0xFFE9: // APP9 case 0xFFEA: // APP10 case 0xFFEB: // APP11 case 0xFFEC: // APP12 case 0xFFED: // APP13 case 0xFFEE: // APP14 case 0xFFEF: // APP15 case 0xFFFE: // COM (Comment) let appData = this.readDataBlock(); switch(fileMarker){ case 0xFFE0: if ( appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0 ) this.jfif = { // 'JFIF\x00' version : { major: appData[5], minor: appData[6] }, densityUnits: appData[7], xDensity : (appData[8 ] << 8) | appData[9 ], yDensity : (appData[10] << 8) | appData[11], thumbWidth : appData[12], thumbHeight : appData[13], thumbData : appData.slice(14, 14 + 3 * appData[12] * appData[13]) }; break; // TODO APP1 - Exif case 0xFFEE: if ( appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F && appData[3] === 0x62 && appData[4] === 0x65 && appData[5] === 0 ) this.adobe = { // 'Adobe\x00' version : appData[6], flags0 : (appData[7] << 8) | appData[8], flags1 : (appData[9] << 8) | appData[10], transformCode: appData[11] }; break; } break; case 0xFFDB: // DQT (Define Quantization Tables) for(let quantizationTablesLength = this.readUint16() - 2; quantizationTablesLength > 0; quantizationTablesLength--) { let quantizationTableSpec = this.readUint8(); let tableData = new Int32Array(64); switch(quantizationTableSpec >> 4){ case 0: // 8 bit values tableData.forEach((v, i) => tableData[this.dctZigZag[i]] = this.readUint8()); break; case 1: //16 bit tableData.forEach((v, i) => tableData[this.dctZigZag[i]] = this.readUint16()); break; default: console.log('JpegImage: Error: DQT: invalid table spec'); return; } quantizationTables[quantizationTableSpec & 15] = tableData; } break; case 0xFFC0: // SOF0 (Start of Frame, Baseline DCT) case 0xFFC1: // SOF1 (Start of Frame, Extended DCT) case 0xFFC2: // SOF2 (Start of Frame, Progressive DCT) this.readUint16(); // skip data length frame = { extended : fileMarker === 0xFFC1, progressive : fileMarker === 0xFFC2, precision : this.readUint8(), scanLines : this.readUint16(), samplesPerLine : this.readUint16(), components : {}, componentsOrder: new Array(this.readUint8()) }; frame.componentsOrder.forEach((v, i) => { let componentId = this.readUint8(); let b = this.readUint8(); frame.componentsOrder[i] = componentId; frame.components[componentId] = { h : b >> 4, v : b & 15, quantizationIdx: this.readUint8() }; }); this.prepareComponents(frame); frames.push(frame); break; case 0xFFC4: // DHT (Define Huffman Tables) let huffmanLength = this.readUint16() - 2; while (huffmanLength > 0) { let huffmanTableSpec = this.readUint8(); let codeLengths = new Uint8Array(16); let codeLengthSum = 0; codeLengths.forEach((v, i) => codeLengthSum += (codeLengths[i] = this.readUint8())); let huffmanValues = new Uint8Array(codeLengthSum); huffmanValues.forEach((v, i) => huffmanValues[i] = this.readUint8()); huffmanLength -= 1 + codeLengths.length + huffmanValues.length; ((huffmanTableSpec >> 4) === 0 ? huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] = this.buildHuffmanTable(codeLengths, huffmanValues); } break; case 0xFFDD: // DRI (Define Restart Interval) this.readUint16(); // skip data length resetInterval = this.readUint16(); break; case 0xFFDA: // SOS (Start of Scan) this.readUint16(); // scanLength let components = []; for (let selectorsCount = this.readUint8; selectorsCount > 0; selectorsCount--) { let component = frame.components[this.readUint8()]; let tableSpec = this.readUint8(); component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4]; component.huffmanTableAC = huffmanTablesAC[tableSpec & 15]; components.push(component); } let spectralStart = this.readUint8(); let spectralEnd = this.readUint8(); let successiveApproximation = this.readUint8(); decodeScan( data, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15 ); break; case 0xFFFF: // Fill bytes if (this.getUint8() !== 0xFF) this.skip(-1); // Avoid skipping a valid marker. break; default: this.skip(-2); let d1 = this.getUint8(); this.skip(-1); let d0 = this.getUint(8); // could be incorrect encoding -- last 0xFF byte of the previous // block was eaten by the encoder if (d0 == 0xFF && d1 >= 0xC0 && d1 <= 0xFE) break; else { console.log('JpegImage: Error: unknown JPEG marker ' + fileMarker.toString(16)); return; } } } if (frames.length != 1) throw new Error("only single frame JPEGs supported"); // set each frame's components quantization table for (var i = 0; i < frames.length; i++) { var cp = frames[i].components; for (var j in cp) { cp[j].quantizationTable = quantizationTables[cp[j].quantizationIdx]; delete cp[j].quantizationIdx; } } this.width = frame.samplesPerLine; this.height = frame.scanLines; this.jfif = jfif; this.adobe = adobe; this.components = []; for (var i = 0; i < frame.componentsOrder.length; i++) { var component = frame.components[frame.componentsOrder[i]]; this.components.push({ lines: buildComponentData(frame, component), scaleX: component.h / frame.maxH, scaleY: component.v / frame.maxV }); } } parse: function parse(data) { var offset = 0, length = data.length; function readUint16() { var value = (data[offset] << 8) | data[offset + 1]; offset += 2; return value; } function readDataBlock() { var length = readUint16(); var array = data.subarray(offset, offset + length - 2); offset += array.length; return array; } function prepareComponents(frame) { var maxH = 0, maxV = 0; var component, componentId; for (componentId in frame.components) { if (frame.components.hasOwnProperty(componentId)) { component = frame.components[componentId]; if (maxH < component.h) maxH = component.h; if (maxV < component.v) maxV = component.v; } } var mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / maxH); var mcusPerColumn = Math.ceil(frame.scanLines / 8 / maxV); for (componentId in frame.components) { if (frame.components.hasOwnProperty(componentId)) { component = frame.components[componentId]; var blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / maxH); var blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / maxV); var blocksPerLineForMcu = mcusPerLine * component.h; var blocksPerColumnForMcu = mcusPerColumn * component.v; var blocks = []; for (var i = 0; i < blocksPerColumnForMcu; i++) { var row = []; for (var j = 0; j < blocksPerLineForMcu; j++) row.push(new Int32Array(64)); blocks.push(row); } component.blocksPerLine = blocksPerLine; component.blocksPerColumn = blocksPerColumn; component.blocks = blocks; } } frame.maxH = maxH; frame.maxV = maxV; frame.mcusPerLine = mcusPerLine; frame.mcusPerColumn = mcusPerColumn; } var jfif = null; var adobe = null; var pixels = null; var frame, resetInterval; var quantizationTables = [], frames = []; var huffmanTablesAC = [], huffmanTablesDC = []; var fileMarker = readUint16(); if (fileMarker != 0xFFD8) { // SOI (Start of Image) throw new Error("SOI not found"); } fileMarker = readUint16(); while (fileMarker != 0xFFD9) { // EOI (End of image) var i, j, l; switch(fileMarker) { case 0xFF00: break; case 0xFFE0: // APP0 (Application Specific) case 0xFFE1: // APP1 case 0xFFE2: // APP2 case 0xFFE3: // APP3 case 0xFFE4: // APP4 case 0xFFE5: // APP5 case 0xFFE6: // APP6 case 0xFFE7: // APP7 case 0xFFE8: // APP8 case 0xFFE9: // APP9 case 0xFFEA: // APP10 case 0xFFEB: // APP11 case 0xFFEC: // APP12 case 0xFFED: // APP13 case 0xFFEE: // APP14 case 0xFFEF: // APP15 case 0xFFFE: // COM (Comment) var appData = readDataBlock(); if (fileMarker === 0xFFE0) { if (appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0) { // 'JFIF\x00' jfif = { version: { major: appData[5], minor: appData[6] }, densityUnits: appData[7], xDensity: (appData[8] << 8) | appData[9], yDensity: (appData[10] << 8) | appData[11], thumbWidth: appData[12], thumbHeight: appData[13], thumbData: appData.subarray(14, 14 + 3 * appData[12] * appData[13]) }; } } // TODO APP1 - Exif if (fileMarker === 0xFFEE) { if (appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F && appData[3] === 0x62 && appData[4] === 0x65 && appData[5] === 0) { // 'Adobe\x00' adobe = { version: appData[6], flags0: (appData[7] << 8) | appData[8], flags1: (appData[9] << 8) | appData[10], transformCode: appData[11] }; } } break; case 0xFFDB: // DQT (Define Quantization Tables) var quantizationTablesLength = readUint16(); var quantizationTablesEnd = quantizationTablesLength + offset - 2; while (offset < quantizationTablesEnd) { var quantizationTableSpec = data[offset++]; var tableData = new Int32Array(64); if ((quantizationTableSpec >> 4) === 0) { // 8 bit values for (j = 0; j < 64; j++) { var z = dctZigZag[j]; tableData[z] = data[offset++]; } } else if ((quantizationTableSpec >> 4) === 1) { //16 bit for (j = 0; j < 64; j++) { var z = dctZigZag[j]; tableData[z] = readUint16(); } } else throw new Error("DQT: invalid table spec"); quantizationTables[quantizationTableSpec & 15] = tableData; } break; case 0xFFC0: // SOF0 (Start of Frame, Baseline DCT) case 0xFFC1: // SOF1 (Start of Frame, Extended DCT) case 0xFFC2: // SOF2 (Start of Frame, Progressive DCT) readUint16(); // skip data length frame = {}; frame.extended = (fileMarker === 0xFFC1); frame.progressive = (fileMarker === 0xFFC2); frame.precision = data[offset++]; frame.scanLines = readUint16(); frame.samplesPerLine = readUint16(); frame.components = {}; frame.componentsOrder = []; var componentsCount = data[offset++], componentId; var maxH = 0, maxV = 0; for (i = 0; i < componentsCount; i++) { componentId = data[offset]; var h = data[offset + 1] >> 4; var v = data[offset + 1] & 15; var qId = data[offset + 2]; frame.componentsOrder.push(componentId); frame.components[componentId] = { h: h, v: v, quantizationIdx: qId }; offset += 3; } prepareComponents(frame); frames.push(frame); break; case 0xFFC4: // DHT (Define Huffman Tables) var huffmanLength = readUint16(); for (i = 2; i < huffmanLength;) { var huffmanTableSpec = data[offset++]; var codeLengths = new Uint8Array(16); var codeLengthSum = 0; for (j = 0; j < 16; j++, offset++) codeLengthSum += (codeLengths[j] = data[offset]); var huffmanValues = new Uint8Array(codeLengthSum); for (j = 0; j < codeLengthSum; j++, offset++) huffmanValues[j] = data[offset]; i += 17 + codeLengthSum; ((huffmanTableSpec >> 4) === 0 ? huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] = buildHuffmanTable(codeLengths, huffmanValues); } break; case 0xFFDD: // DRI (Define Restart Interval) readUint16(); // skip data length resetInterval = readUint16(); break; case 0xFFDA: // SOS (Start of Scan) var scanLength = readUint16(); var selectorsCount = data[offset++]; var components = [], component; for (i = 0; i < selectorsCount; i++) { component = frame.components[data[offset++]]; var tableSpec = data[offset++]; component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4]; component.huffmanTableAC = huffmanTablesAC[tableSpec & 15]; components.push(component); } var spectralStart = data[offset++]; var spectralEnd = data[offset++]; var successiveApproximation = data[offset++]; var processed = decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15); offset += processed; break; case 0xFFFF: // Fill bytes if (data[offset] !== 0xFF) { // Avoid skipping a valid marker. offset--; } break; default: if (data[offset - 3] == 0xFF && data[offset - 2] >= 0xC0 && data[offset - 2] <= 0xFE) { // could be incorrect encoding -- last 0xFF byte of the previous // block was eaten by the encoder offset -= 3; break; } throw new Error("unknown JPEG marker " + fileMarker.toString(16)); } fileMarker = readUint16(); } if (frames.length != 1) throw new Error("only single frame JPEGs supported"); // set each frame's components quantization table for (var i = 0; i < frames.length; i++) { var cp = frames[i].components; for (var j in cp) { cp[j].quantizationTable = quantizationTables[cp[j].quantizationIdx]; delete cp[j].quantizationIdx; } } this.width = frame.samplesPerLine; this.height = frame.scanLines; this.jfif = jfif; this.adobe = adobe; this.components = []; for (var i = 0; i < frame.componentsOrder.length; i++) { var component = frame.components[frame.componentsOrder[i]]; this.components.push({ lines: buildComponentData(frame, component), scaleX: component.h / frame.maxH, scaleY: component.v / frame.maxV }); } }, } class Jpeg { decode(jpegData) { } } jpeg = new Jpeg();