Rusha

A JavaScript implementation of the Secure Hash Algorithm, SHA-1

当前为 2015-10-12 提交的版本,查看 最新版本

此脚本不应直接安装。它是供其他脚本使用的外部库,要使用该库请加入元指令 // @require https://update.cn-greasyfork.org/scripts/13017/79803/Rusha.js

您需要先安装一个扩展,例如 篡改猴Greasemonkey暴力猴,之后才能安装此脚本。

You will need to install an extension such as Tampermonkey to install this script.

您需要先安装一个扩展,例如 篡改猴暴力猴,之后才能安装此脚本。

您需要先安装一个扩展,例如 篡改猴Userscripts ,之后才能安装此脚本。

您需要先安装一款用户脚本管理器扩展,例如 Tampermonkey,才能安装此脚本。

您需要先安装用户脚本管理器扩展后才能安装此脚本。

(我已经安装了用户脚本管理器,让我安装!)

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展,比如 Stylus,才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

您需要先安装一款用户样式管理器扩展后才能安装此样式。

(我已经安装了用户样式管理器,让我安装!)

// ==UserScript==
// @name        Rusha
// @description A JavaScript implementation of the Secure Hash Algorithm, SHA-1
// @version     1.0
// ==/UserScript==

/*
 * Rusha, a JavaScript implementation of the Secure Hash Algorithm, SHA-1,
 * as defined in FIPS PUB 180-1, tuned for high performance with large inputs.
 * (http://github.com/srijs/rusha)
 *
 * Inspired by Paul Johnstons implementation (http://pajhome.org.uk/crypt/md5).
 *
 * Copyright (c) 2013 Sam Rijs (http://awesam.de).
 * Released under the terms of the MIT license as follows:
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */
(function () {
    var util = {
            getDataType: function (data) {
                if (typeof data === 'string') {
                    return 'string';
                }
                if (data instanceof Array) {
                    return 'array';
                }
                if (typeof global !== 'undefined' && global.Buffer && global.Buffer.isBuffer(data)) {
                    return 'buffer';
                }
                if (data instanceof ArrayBuffer) {
                    return 'arraybuffer';
                }
                if (data.buffer instanceof ArrayBuffer) {
                    return 'view';
                }
                if (data instanceof Blob) {
                    return 'blob';
                }
                throw new Error('Unsupported data type.');
            }
        };
    // The Rusha object is a wrapper around the low-level RushaCore.
    // It provides means of converting different inputs to the
    // format accepted by RushaCore as well as other utility methods.
    function Rusha(chunkSize) {
        'use strict';
        // Private object structure.
        var self$2 = { fill: 0 };
        // Calculate the length of buffer that the sha1 routine uses
        // including the padding.
        var padlen = function (len) {
            for (len += 9; len % 64 > 0; len += 1);
            return len;
        };
        var padZeroes = function (bin, len) {
            for (var i = len >> 2; i < bin.length; i++)
                bin[i] = 0;
        };
        var padData = function (bin, chunkLen, msgLen) {
            bin[chunkLen >> 2] |= 128 << 24 - (chunkLen % 4 << 3);
            bin[((chunkLen >> 2) + 2 & ~15) + 14] = msgLen >> 29;
            bin[((chunkLen >> 2) + 2 & ~15) + 15] = msgLen << 3;
        };
        // Convert a binary string and write it to the heap.
        // A binary string is expected to only contain char codes < 256.
        var convStr = function (H8, H32, start, len, off) {
            var str = this, i, om = off % 4, lm = len % 4, j = len - lm;
            if (j > 0) {
                switch (om) {
                case 0:
                    H8[off + 3 | 0] = str.charCodeAt(start);
                case 1:
                    H8[off + 2 | 0] = str.charCodeAt(start + 1);
                case 2:
                    H8[off + 1 | 0] = str.charCodeAt(start + 2);
                case 3:
                    H8[off | 0] = str.charCodeAt(start + 3);
                }
            }
            for (i = om; i < j; i = i + 4 | 0) {
                H32[off + i >> 2] = str.charCodeAt(start + i) << 24 | str.charCodeAt(start + i + 1) << 16 | str.charCodeAt(start + i + 2) << 8 | str.charCodeAt(start + i + 3);
            }
            switch (lm) {
            case 3:
                H8[off + j + 1 | 0] = str.charCodeAt(start + j + 2);
            case 2:
                H8[off + j + 2 | 0] = str.charCodeAt(start + j + 1);
            case 1:
                H8[off + j + 3 | 0] = str.charCodeAt(start + j);
            }
        };
        // Convert a buffer or array and write it to the heap.
        // The buffer or array is expected to only contain elements < 256.
        var convBuf = function (H8, H32, start, len, off) {
            var buf = this, i, om = off % 4, lm = len % 4, j = len - lm;
            if (j > 0) {
                switch (om) {
                case 0:
                    H8[off + 3 | 0] = buf[start];
                case 1:
                    H8[off + 2 | 0] = buf[start + 1];
                case 2:
                    H8[off + 1 | 0] = buf[start + 2];
                case 3:
                    H8[off | 0] = buf[start + 3];
                }
            }
            for (i = 4 - om; i < j; i = i += 4 | 0) {
                H32[off + i >> 2] = buf[start + i] << 24 | buf[start + i + 1] << 16 | buf[start + i + 2] << 8 | buf[start + i + 3];
            }
            switch (lm) {
            case 3:
                H8[off + j + 1 | 0] = buf[start + j + 2];
            case 2:
                H8[off + j + 2 | 0] = buf[start + j + 1];
            case 1:
                H8[off + j + 3 | 0] = buf[start + j];
            }
        };
        var convBlob = function (H8, H32, start, len, off) {
            var blob = this, i, om = off % 4, lm = len % 4, j = len - lm;
            var buf = new Uint8Array(reader.readAsArrayBuffer(blob.slice(start, start + len)));
            if (j > 0) {
                switch (om) {
                case 0:
                    H8[off + 3 | 0] = buf[0];
                case 1:
                    H8[off + 2 | 0] = buf[1];
                case 2:
                    H8[off + 1 | 0] = buf[2];
                case 3:
                    H8[off | 0] = buf[3];
                }
            }
            for (i = 4 - om; i < j; i = i += 4 | 0) {
                H32[off + i >> 2] = buf[i] << 24 | buf[i + 1] << 16 | buf[i + 2] << 8 | buf[i + 3];
            }
            switch (lm) {
            case 3:
                H8[off + j + 1 | 0] = buf[j + 2];
            case 2:
                H8[off + j + 2 | 0] = buf[j + 1];
            case 1:
                H8[off + j + 3 | 0] = buf[j];
            }
        };
        var convFn = function (data) {
            switch (util.getDataType(data)) {
            case 'string':
                return convStr.bind(data);
            case 'array':
                return convBuf.bind(data);
            case 'buffer':
                return convBuf.bind(data);
            case 'arraybuffer':
                return convBuf.bind(new Uint8Array(data));
            case 'view':
                return convBuf.bind(new Uint8Array(data.buffer, data.byteOffset, data.byteLength));
            case 'blob':
                return convBlob.bind(data);
            }
        };
        var slice = function (data, offset) {
            switch (util.getDataType(data)) {
            case 'string':
                return data.slice(offset);
            case 'array':
                return data.slice(offset);
            case 'buffer':
                return data.slice(offset);
            case 'arraybuffer':
                return data.slice(offset);
            case 'view':
                return data.buffer.slice(offset);
            }
        };
        // Convert an ArrayBuffer into its hexadecimal string representation.
        var hex = function (arrayBuffer) {
            var i, x, hex_tab = '0123456789abcdef', res = [], binarray = new Uint8Array(arrayBuffer);
            for (i = 0; i < binarray.length; i++) {
                x = binarray[i];
                res[i] = hex_tab.charAt(x >> 4 & 15) + hex_tab.charAt(x >> 0 & 15);
            }
            return res.join('');
        };
        var ceilHeapSize = function (v) {
            // The asm.js spec says:
            // The heap object's byteLength must be either
            // 2^n for n in [12, 24) or 2^24 * n for n ≥ 1.
            // Also, byteLengths smaller than 2^16 are deprecated.
            var p;
            // If v is smaller than 2^16, the smallest possible solution
            // is 2^16.
            if (v <= 65536)
                return 65536;
            // If v < 2^24, we round up to 2^n,
            // otherwise we round up to 2^24 * n.
            if (v < 16777216) {
                for (p = 1; p < v; p = p << 1);
            } else {
                for (p = 16777216; p < v; p += 16777216);
            }
            return p;
        };
        // Initialize the internal data structures to a new capacity.
        var init = function (size) {
            if (size % 64 > 0) {
                throw new Error('Chunk size must be a multiple of 128 bit');
            }
            self$2.maxChunkLen = size;
            self$2.padMaxChunkLen = padlen(size);
            // The size of the heap is the sum of:
            // 1. The padded input message size
            // 2. The extended space the algorithm needs (320 byte)
            // 3. The 160 bit state the algoritm uses
            self$2.heap = new ArrayBuffer(ceilHeapSize(self$2.padMaxChunkLen + 320 + 20));
            self$2.h32 = new Int32Array(self$2.heap);
            self$2.h8 = new Int8Array(self$2.heap);
            self$2.core = new Rusha._core({
                Int32Array: Int32Array,
                DataView: DataView
            }, {}, self$2.heap);
            self$2.buffer = null;
        };
        // Iinitializethe datastructures according
        // to a chunk siyze.
        init(chunkSize || 64 * 1024);
        var initState = function (heap, padMsgLen) {
            var io = new Int32Array(heap, padMsgLen + 320, 5);
            io[0] = 1732584193;
            io[1] = -271733879;
            io[2] = -1732584194;
            io[3] = 271733878;
            io[4] = -1009589776;
        };
        var padChunk = function (chunkLen, msgLen) {
            var padChunkLen = padlen(chunkLen);
            var view = new Int32Array(self$2.heap, 0, padChunkLen >> 2);
            padZeroes(view, chunkLen);
            padData(view, chunkLen, msgLen);
            return padChunkLen;
        };
        // Write data to the heap.
        var write = function (data, chunkOffset, chunkLen) {
            convFn(data)(self$2.h8, self$2.h32, chunkOffset, chunkLen, 0);
        };
        // Initialize and call the RushaCore,
        // assuming an input buffer of length len * 4.
        var coreCall = function (data, chunkOffset, chunkLen, msgLen, finalize) {
            var padChunkLen = chunkLen;
            if (finalize) {
                padChunkLen = padChunk(chunkLen, msgLen);
            }
            write(data, chunkOffset, chunkLen);
            self$2.core.hash(padChunkLen, self$2.padMaxChunkLen);
        };
        var getRawDigest = function (heap, padMaxChunkLen) {
            var io = new Int32Array(heap, padMaxChunkLen + 320, 5);
            var out = new Int32Array(5);
            var arr = new DataView(out.buffer);
            arr.setInt32(0, io[0], false);
            arr.setInt32(4, io[1], false);
            arr.setInt32(8, io[2], false);
            arr.setInt32(12, io[3], false);
            arr.setInt32(16, io[4], false);
            return out;
        };
        // Calculate the hash digest as an array of 5 32bit integers.
        var rawDigest = this.rawDigest = function (str) {
                var msgLen = str.byteLength || str.length || str.size || 0;
                initState(self$2.heap, self$2.padMaxChunkLen);
                var chunkOffset = 0, chunkLen = self$2.maxChunkLen, last;
                for (chunkOffset = 0; msgLen > chunkOffset + chunkLen; chunkOffset += chunkLen) {
                    coreCall(str, chunkOffset, chunkLen, msgLen, false);
                }
                coreCall(str, chunkOffset, msgLen - chunkOffset, msgLen, true);
                return getRawDigest(self$2.heap, self$2.padMaxChunkLen);
            };
        // The digest and digestFrom* interface returns the hash digest
        // as a hex string.
        this.digest = this.digestFromString = this.digestFromBuffer = this.digestFromArrayBuffer = function (str) {
            return hex(rawDigest(str).buffer);
        };
    }
    ;
    // The low-level RushCore module provides the heart of Rusha,
    // a high-speed sha1 implementation working on an Int32Array heap.
    // At first glance, the implementation seems complicated, however
    // with the SHA1 spec at hand, it is obvious this almost a textbook
    // implementation that has a few functions hand-inlined and a few loops
    // hand-unrolled.
    Rusha._core = function RushaCore(stdlib, foreign, heap) {
        'use asm';
        var H = new stdlib.Int32Array(heap);
        function hash(k, x) {
            // k in bytes
            k = k | 0;
            x = x | 0;
            var i = 0, j = 0, y0 = 0, z0 = 0, y1 = 0, z1 = 0, y2 = 0, z2 = 0, y3 = 0, z3 = 0, y4 = 0, z4 = 0, t0 = 0, t1 = 0;
            y0 = H[x + 320 >> 2] | 0;
            y1 = H[x + 324 >> 2] | 0;
            y2 = H[x + 328 >> 2] | 0;
            y3 = H[x + 332 >> 2] | 0;
            y4 = H[x + 336 >> 2] | 0;
            for (i = 0; (i | 0) < (k | 0); i = i + 64 | 0) {
                z0 = y0;
                z1 = y1;
                z2 = y2;
                z3 = y3;
                z4 = y4;
                for (j = 0; (j | 0) < 64; j = j + 4 | 0) {
                    t1 = H[i + j >> 2] | 0;
                    t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | ~y1 & y3) | 0) + ((t1 + y4 | 0) + 1518500249 | 0) | 0;
                    y4 = y3;
                    y3 = y2;
                    y2 = y1 << 30 | y1 >>> 2;
                    y1 = y0;
                    y0 = t0;
                    H[k + j >> 2] = t1;
                }
                for (j = k + 64 | 0; (j | 0) < (k + 80 | 0); j = j + 4 | 0) {
                    t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31;
                    t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | ~y1 & y3) | 0) + ((t1 + y4 | 0) + 1518500249 | 0) | 0;
                    y4 = y3;
                    y3 = y2;
                    y2 = y1 << 30 | y1 >>> 2;
                    y1 = y0;
                    y0 = t0;
                    H[j >> 2] = t1;
                }
                for (j = k + 80 | 0; (j | 0) < (k + 160 | 0); j = j + 4 | 0) {
                    t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31;
                    t0 = ((y0 << 5 | y0 >>> 27) + (y1 ^ y2 ^ y3) | 0) + ((t1 + y4 | 0) + 1859775393 | 0) | 0;
                    y4 = y3;
                    y3 = y2;
                    y2 = y1 << 30 | y1 >>> 2;
                    y1 = y0;
                    y0 = t0;
                    H[j >> 2] = t1;
                }
                for (j = k + 160 | 0; (j | 0) < (k + 240 | 0); j = j + 4 | 0) {
                    t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31;
                    t0 = ((y0 << 5 | y0 >>> 27) + (y1 & y2 | y1 & y3 | y2 & y3) | 0) + ((t1 + y4 | 0) - 1894007588 | 0) | 0;
                    y4 = y3;
                    y3 = y2;
                    y2 = y1 << 30 | y1 >>> 2;
                    y1 = y0;
                    y0 = t0;
                    H[j >> 2] = t1;
                }
                for (j = k + 240 | 0; (j | 0) < (k + 320 | 0); j = j + 4 | 0) {
                    t1 = (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) << 1 | (H[j - 12 >> 2] ^ H[j - 32 >> 2] ^ H[j - 56 >> 2] ^ H[j - 64 >> 2]) >>> 31;
                    t0 = ((y0 << 5 | y0 >>> 27) + (y1 ^ y2 ^ y3) | 0) + ((t1 + y4 | 0) - 899497514 | 0) | 0;
                    y4 = y3;
                    y3 = y2;
                    y2 = y1 << 30 | y1 >>> 2;
                    y1 = y0;
                    y0 = t0;
                    H[j >> 2] = t1;
                }
                y0 = y0 + z0 | 0;
                y1 = y1 + z1 | 0;
                y2 = y2 + z2 | 0;
                y3 = y3 + z3 | 0;
                y4 = y4 + z4 | 0;
            }
            H[x + 320 >> 2] = y0;
            H[x + 324 >> 2] = y1;
            H[x + 328 >> 2] = y2;
            H[x + 332 >> 2] = y3;
            H[x + 336 >> 2] = y4;
        }
        return { hash: hash };
    };
    // If we'e running in Node.JS, export a module.
    if (typeof module !== 'undefined') {
        module.exports = Rusha;
    } else if (typeof window !== 'undefined') {
        window.Rusha = Rusha;
    }
    // If we're running in a webworker, accept
    // messages containing a jobid and a buffer
    // or blob object, and return the hash result.
    if (typeof FileReaderSync !== 'undefined') {
        var reader = new FileReaderSync(), hasher = new Rusha(4 * 1024 * 1024);
        self.onmessage = function onMessage(event) {
            var hash, data = event.data.data;
            try {
                hash = hasher.digest(data);
                self.postMessage({
                    id: event.data.id,
                    hash: hash
                });
            } catch (e) {
                self.postMessage({
                    id: event.data.id,
                    error: e.name
                });
            }
        };
    }
}());

console.log("Rusha loaded");